Mechanisms of Light-Induced Deformations in Photoreceptors.

Biophys J

Hansen Experimental Physics Laboratory, Stanford University, Stanford, California; Department of Ophthalmology, Stanford University, Stanford, California. Electronic address:

Published: October 2020

Biological cells deform on a nanometer scale when their transmembrane voltage changes, an effect that has been visualized during the action potential using quantitative phase imaging. Similar changes in the optical path length have been observed in photoreceptor outer segments after a flash stimulus via phase-resolved optical coherence tomography. These optoretinograms reveal a fast, millisecond-scale contraction of the outer segments by tens of nanometers, followed by a slow (hundreds of milliseconds) elongation reaching hundreds of nanometers. Ultrafast measurements of the contractile response using line-field phase-resolved optical coherence tomography show a logarithmic increase in amplitude and a decreasing time to peak with increasing stimulus intensity. We present a model that relates the early receptor potential to these deformations based on the voltage-dependent membrane tension-the mechanism observed earlier in neurons and other electrogenic cells. The early receptor potential is caused by conformational changes in opsins after photoisomerization, resulting in the fractional shift of the charge across the disk membrane. Lateral repulsion of the ions on both sides of the membrane affects its surface tension and leads to its lateral expansion. Because the volume of the disks does not change on a millisecond timescale, their lateral expansion leads to an axial contraction of the outer segment. With increasing stimulus intensity and the resulting tension, the area expansion coefficient of the disk membrane also increases as thermally induced fluctuations are pulled flat, resisting further expansion. This leads to the logarithmic saturation observed in measurements as well as the peak shift in time. This imaging technique therefore relates the structural changes in the photoreceptor to the underlying neurological function of transducing light into electrical signals. Such label-free optical monitoring of neural activity using fast interferometry may be applicable not only to optoretinography but also to neuroscience in general.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7642315PMC
http://dx.doi.org/10.1016/j.bpj.2020.09.005DOI Listing

Publication Analysis

Top Keywords

outer segments
8
phase-resolved optical
8
optical coherence
8
coherence tomography
8
contraction outer
8
increasing stimulus
8
stimulus intensity
8
early receptor
8
receptor potential
8
disk membrane
8

Similar Publications

Introduction: The enteric nervous system (ENS) in the wall of the gastrointestinal tract is complex and comprises many neurons, which are differentiated in terms of structure, function and neurochemistry. Neuregulin 1 (NRG 1) is one of the neuronal factors synthesised in the ENS about the distribution and functions of which relatively little is known. The present study is the first description of the distribution of NRG 1 in the ENS in various segments of the porcine small intestine.

View Article and Find Full Text PDF

The Rab11-Rabin8-Rab8 ciliogenesis complex regulates the expansion of cilia-derived light-sensing organelles, the rod outer segments, via post-Golgi rhodopsin transport carriers (RTCs). Rabin8, an effector of Rab11 and a nucleotide exchange factor (GEF) for Rab8, is phosphorylated at S272 by NDR2 kinase (aka STK38L), a canine erd gene product linked to the human ciliopathy Leber congenital amaurosis (LCA). Here, we define the step at which NDR2 phosphorylated Rabin8 regulates Rab11-Rab8 succession in X.

View Article and Find Full Text PDF

Canine Best disease as a translational model.

Eye (Lond)

January 2025

Division of Experimental Retinal Therapies, Department of Clinical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, USA.

In this review, we summarize the findings of several pre-clinical studies in the canine BEST1 disease model. To this end, client-owned and purpose bred dogs that were compound heterozygotes or homozygotes, respectively, for two or one of 3 different mutations in BEST1 were evaluated by ophthalmic examination, cSLO/sdOCT imaging, and retinal immunohistochemistry to characterize the clinical and microanatomic features of the disease. Subsequently AAV-mediated gene therapy was done to transfer the BEST1 transgene to the RPE under control of a hVMD2 promoter.

View Article and Find Full Text PDF

There is an urgent need for the cryopreservation of dormant buds to conserve the genetic resources of woody plants, particularly fruit trees, as this method is less time-consuming and relatively inexpensive. In the present study, three different cryopreservation protocols were tested on dormant buds from three varieties of Rupr. The explants were collected between November 2017 and March 2018.

View Article and Find Full Text PDF

Laser-Based Length-Measuring Board for the Measurement of Infant Body Length from Outside an Incubator: Proposal and Assessment of a Model.

Children (Basel)

December 2024

Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal.

Introduction: Opening the incubator side wall to insert a non-sterile length-measuring device carries the risk of microbial contamination and thermal instability for preterm infants. To reduce this inconvenience, a laser-based length-measuring board is proposed to measure body length from outside the incubator.

Methods: This device has two laser-line-shaped cursors which can be pointed to opposite ends of a segment to be measured.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!