Objectives: Clinical studies of chloroquine (CQ) and hydroxychloroquine (HCQ) in COVID-19 disease reported conflicting results. We sought to systematically evaluate the effect of CQ and HCQ with or without azithromycin on outcomes of COVID-19 patients.
Methods: We searched multiple databases, preprints and grey literature up to 17 July 2020. We pooled only adjusted-effect estimates of mortality using a random-effect model. We summarized the effect of CQ or HCQ on viral clearance, ICU admission/mechanical ventilation and hospitalization.
Results: Seven randomized clinical trials (RCTs) and 14 cohort studies were included (20 979 patients). Thirteen studies (1 RCT and 12 cohort studies) with 15 938 hospitalized patients examined the effect of HCQ on short-term mortality. The pooled adjusted OR was 1.05 (95% CI 0.96-1.15, I2 = 0%). Six cohort studies examined the effect of the HCQ+azithromycin combination with a pooled adjusted OR of 1.32 (95% CI 1.00-1.75, I2 = 68.1%). Two cohort studies and four RCTs found no effect of HCQ on viral clearance. One small RCT demonstrated improved viral clearance with CQ and HCQ. Three cohort studies found that HCQ had no significant effect on mechanical ventilation/ICU admission. Two RCTs found no effect for HCQ on hospitalization risk in outpatients with COVID-19.
Conclusions: Moderate certainty evidence suggests that HCQ, with or without azithromycin, lacks efficacy in reducing short-term mortality in patients hospitalized with COVID-19 or risk of hospitalization in outpatients with COVID-19.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665543 | PMC |
http://dx.doi.org/10.1093/jac/dkaa403 | DOI Listing |
Sci Rep
December 2024
Department of Psychiatry and Behavioral Sciences and Weill Center for Neurosciences, University of California, San Francisco, CA, 94107, USA.
Telomere attrition is a hallmark of biological aging, contributing to cellular replicative senescence. However, few studies have examined the determinants of telomere attrition in vivo in humans. Mitochondrial Health Index (MHI), a composite marker integrating mitochondrial energy-transformation capacity and content, may be one important mediator of telomere attrition, as it could impact telomerase activity, a direct regulator of telomere maintenance.
View Article and Find Full Text PDFSci Rep
December 2024
Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
The unintended consequences of polypharmacy pose significant risks to older adults. The complexities of managing numerous medications from multiple prescribers demand a comprehensive approach to mitigate harms. Pharmacist-led clinics have been shown to improve outcomes in patients with diabetes and hypertension.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Breast Surgery, Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, China.
Early prediction of patient responses to neoadjuvant chemotherapy (NACT) is essential for the precision treatment of early breast cancer (EBC). Therefore, this study aims to noninvasively and early predict pathological complete response (pCR). We used dynamic ultrasound (US) imaging changes acquired during NACT, along with clinicopathological features, to create a nomogram and construct a machine learning model.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan.
To investigate for the risk of uveitis among such patients. A retrospective cohort study utilized the TriNetX database and recruited pediatric autoimmune patients diagnosed between January 1st 2004 and December 31st 2022. The non-autoimmune cohort were randomly selected control patients matched by sex, age, and index year.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Informatics, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland.
Manual segmentation of lesions, required for radiotherapy planning and follow-up, is time-consuming and error-prone. Automatic detection and segmentation can assist radiologists in these tasks. This work explores the automated detection and segmentation of brain metastases (BMs) in longitudinal MRIs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!