Species of the perennial woody plant genus Betula dominate subalpine forests and play a significant role in preserving biological diversity. In addition to their conventional benefits, birches synthesize a wide range of secondary metabolites having pharmacological significance. Methyl salicylate (MeSA) is one of these naturally occurring compounds constitutively produced by different birch species. MeSA is therapeutically important in human medicine for muscle injuries and joint pain. However, MeSA is now mainly produced synthetically due to a lack of information relating to MeSA biosynthesis and regulation. In this study, we performed a comprehensive bioinformatics analysis of two candidate genes mediating MeSA biosynthesis, SALICYLIC ACID METHYLTRANSFERASE (SAMT) and SALICYLIC ACID-BINDING PROTEIN 2 (SABP2), of high (B. lenta, B. alleghaniensis, B. medwediewii, and B. grossa) and low (B. pendula, B. utilis, B. alnoides, and B. nana) MeSA-producing birch species. Phylogenetic analyses of SAMT and SABP2 genes and homologous genes from other plant species confirmed their evolutionary relationships. Multiple sequence alignments of the amino acid revealed the occurrence of important residues for substrate specificity in SAMT and SABP2. The analysis of cis elements in different birches indicated a functional multiplicity of SAMT and SABP2 and provided insights into the regulation of both genes. We successfully developed six prominent single nucleotide substitution markers that were validated with 38 additional birch individuals to differentiate high and low MeSA-producing birch species. Relative tissue-specific expression analysis of SAMT in leaf and bark tissue of two high and two low MeSA-synthesizing birches revealed a high expression in the bark of both high MeSA-synthesizing birches. In contrast, SABP2 expression in tissues revealed indifferent levels of expression between species belonging to the two groups. The comparative expression and bioinformatics analyses provided vital information that could be used to apply plant genetic engineering technology in the mass production of organic MeSA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7544025PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0240246PLOS

Publication Analysis

Top Keywords

birch species
16
samt sabp2
12
methyl salicylate
8
mesa biosynthesis
8
mesa-producing birch
8
high low
8
mesa-synthesizing birches
8
species
7
mesa
6
genes
5

Similar Publications

Foliar traits can reflect fitness responses to environmental changes, such as changes in nutrient availability. Species may respond differently to these changes due to differences in traits and their plasticity. Traits and community composition together can influence forest nutrient cycling.

View Article and Find Full Text PDF

Trees growing in urban areas face increasing stress from atmospheric pollutants, with limited attention given to the early responses of young seedlings. This study aimed to address the knowledge gap regarding the effects of simulated pollutant exposure, specifically particulate matter (PM), elevated ozone (O), and carbon dioxide (CO) concentrations, on young seedlings of five tree species: Scots pine ( L.); Norway spruce ( (L.

View Article and Find Full Text PDF

BpMYB06 Acts as a Positive Regulatory Factor in Saline-alkaline Stress Resistance by Binding to Two Novel Elements.

Plant Cell Physiol

December 2024

The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.

Saline-alkaline salinity is recognized as one of the most severe abiotic stress factors, limiting plant growth and resulting in significant yield losses. MYB transcription factors (TFs) are crucial for plant tolerance to abiotic stress. However, the roles and regulatory mechanism of MYB TFs underlying saline-alkaline stress tolerance has not yet been investigated in Betula platyphylla.

View Article and Find Full Text PDF

This study offers considerable information on plant wealth of therapeutic importance used traditionally by the residents of 11 villages under three subdivisions of Kurseong, Darjeeling Sadar, and Mirik in the Darjeeling District, West Bengal. For the acquisition of ethnomedicinal information, semi-structured interviews were conducted with 47 informants, of whom 11 persons were herbalists and 36 were knowledgeable persons. Free prior informed consent was obtained from each participant prior to the collection of field data.

View Article and Find Full Text PDF

Revised method for constructing acoustic vulnerability curves in trees.

Tree Physiol

January 2025

Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium.

During drought, the formation of air bubbles known as embolisms in the water-conducting xylem reduces hydraulic conductivity, which can ultimately result in tree death. Accurately quantifying vulnerability to embolism formation is therefore essential for understanding tree hydraulics. Acoustic emission (AE) analysis offers a non-destructive method to monitor this process, yet the interpretation of captured signals remains debated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!