Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: To compare the pharmacokinetics and pharmacodynamics of IV midazolam after cardiac surgery between children with and without Down syndrome.
Design: Prospective, single-center observational trial.
Setting: PICU in a university-affiliated pediatric teaching hospital.
Patients: Twenty-one children with Down syndrome and 17 without, 3-36 months, scheduled for cardiac surgery with cardiopulmonary bypass.
Interventions: Postoperatively, nurses regularly assessed the children's pain and discomfort with the validated COMFORT-Behavioral scale and Numeric Rating Scale for pain. A loading dose of morphine (100 µg/kg) was administered after coming off bypass; thereafter, morphine infusion was commenced at 40 µg/kg/hr. Midazolam was started if COMFORT-Behavioral scale score of greater than 16 and Numeric Rating Scale score of less than 4 (suggestive of undersedation). Plasma midazolam and metabolite concentrations were measured for population pharmacokinetic- and pharmacodynamic analysis using nonlinear mixed effects modeling (NONMEM) (Version VI; GloboMax LLC, Hanover, MD) software.
Measurements And Main Results: Twenty-six children (72%) required midazolam postoperatively (15 with Down syndrome and 11 without; p = 1.00). Neither the cumulative midazolam dose (p = 0.61) nor the time elapsed before additional sedation was initiated (p = 0.71), statistically significantly differed between children with and without Down syndrome. Population pharmacokinetic and pharmacodynamics analysis revealed no statistically significant differences between the children with and without Down syndrome. Bodyweight was a significant covariate for the clearance of 1-OH-midazolam to 1-OH-glucuronide (p = 0.003). Pharmacodynamic analysis revealed a marginal effect of the midazolam concentration on the COMFORT-Behavioral score.
Conclusions: The majority of children with and without Down syndrome required additional sedation after cardiac surgery. This pharmacokinetic and pharmacodynamic analysis does not provide evidence for different dosing of midazolam in children with Down syndrome after cardiac surgery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/PCC.0000000000002580 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!