Perfluorooctanoic acid (PFOA) is bioaccumulative in crops. PFOA bioaccumulation potential varies largely among crop varieties. Root exudates are found to be associated with such variations. Concentrations of low-molecular-weight organic acids (LMWOAs) in root exudates from a PFOA-high-accumulation lettuce variety are observed significantly higher than those from PFOA-low-accumulation lettuce variety ( < 0.05). Root exudates and their LMWOAs components exert great influences on the linear sorption-desorption isotherms of PFOA in soils, thus activating PFOA and enhancing its bioavailability. Among root exudate components, oxalic acid is identified to play a key role in activating PFOA uptake, with >80% attribution. Oxalic acid at rhizospheric concentrations (0.02-0.5 mM) can effectively inhibit PFOA sorption to soils by decreasing hydrophobic force, electrostatic attraction, ligand exchange, and cation-bridge effect. Oxalic acid enhances dissolution of metallic ions, iron/aluminum oxides, and organic matters from soils and forms oxalate-metal complexes, based on nuclear magnetic resonance spectra, ultraviolet spectra, and analyses of metal ions, iron/aluminum organometallic complexes, and dissolved organic carbon. The findings not only reveal the activation process of PFOA in soils by root exudates, particularly oxalic acid at rhizospheric concentrations, but also give an insight into the mechanism of enhancing PFOA accumulation in lettuce varieties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.0c04124 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!