Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The massive release of the greenhouse gas CO has resulted in numerous environmental issues. In searching for advanced technologies for CO capture/conversions, recent advances in electrochemical reduction of CO in molten salts shed a light on potential solutions to CO mitigation. Electro-reduction of CO in molten salts exhibits features like high selectivity and efficiency towards sustainable carbons and fuels, low toxicity, and possibility to combine with in situ CO capture. In this Minireview, we highlight the tuning of the products in this process and mainly discuss two categories of electrolyte, carbonate-based molten salts (CMS) and those based on halides (HMS). Depending on the synthetic conditions, fuels such as CO or hydrocarbons (in the presence of hydrogen source, i. e., LiOH, NaOH, or KOH in the electrolyte) as well as high-value nanostructured carbons including carbon nanotubes, carbon nanofibers, carbon nano-onions, and graphene can be obtained with high efficiency. The synthesis parameters are compared, and the applications of as-obtained carbons are briefly summarized. Additionally, some perspectives on this technology are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202002060 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!