Surfactants are widely used in many chemical industries and as primary components of cleaning detergents due to their specific characteristics, which in turn results in high pollution of domestic and industrial wastewaters by such substances. In this study, the mechanistic pathways of the adsorption of cationic benzyl-dimethyl-dodecyl ammonium bromide (BDDAB) and anionic sodium dodecyl sulfate (SDS) surfactants on kaolinite clay in water were investigated. The results showed that the adsorption of anionic surfactant (SDS) on kaolinite is better compared with cationic surfactant (BDDAB), wherein the ♦maximum adsorption capacity was found 161.4 μmol g and 234 μmol g for BDDAB and SDS, respectively. Adsorption kinetics were the best suited to pseudo-second-order model for both BDDAB and SDS with an adsorption rate constant of 0.028 g μmol min and 0.023 g μmol min, respectively. Meanwhile, the adsorption of BDDAB by kaolinite showed that the isotherm adsorption tended to follow the Langmuir-Freundlich and Freundlich isotherm models. However, the SDS adsorption isotherm obeyed only the Langmuir-Freundlich model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-020-11083-6 | DOI Listing |
Polymers (Basel)
January 2025
Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, Plaza de la Ciencias s/n, 28040 Madrid, Spain.
This study examines the adsorption and bulk assembly behaviour of quaternized hydroxyethylcellulose ethoxylate (QHECE)-sodium dodecyl sulphate (SDS) complexes on negatively charged substrates. Due to its quaternized structure, QHECE, which is used in several industries, including cosmetics, exhibits enhanced electrostatic interactions. The phase behaviour and adsorption mechanisms of QHECE-SDS complexes are investigated using model substrates that mimic the wettability and surface charge of damaged hair fibres.
View Article and Find Full Text PDFSci Total Environ
January 2025
Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India. Electronic address:
Over the last decades, the release and occurrence of organic pollutants in aquatic systems have become a major global concern due to their bioaccumulation, toxicity, and adverse effects on the ecosystem. Tetracycline (TC), a widely used antibiotic, is often found at high concentrations in the aqueous environment and tends to bind with the natural colloids. Post-COVID-19 pandemic, the release of surfactants in the environment has increased due to the excessive use of washing and cleaning products.
View Article and Find Full Text PDFWater Res
January 2025
Kurita Water Industries Ltd., Nakano-ku, Tokyo 164-0001, Japan.
In the integrated circuit manufacturing process, reverse osmosis (RO) membranes are widely used for wastewater reclamation. However, fouling by typical surfactants significantly reduces membrane efficiency and lifespan. This study investigates the fouling mechanisms of typical surfactants-cetyl trimethyl ammonium bromide (CTAB, cationic), sodium dodecyl sulfate (SDS, anionic), and polyoxyethylene octyl phenyl ether (TX, nonionic)-on RO membranes.
View Article and Find Full Text PDFBMC Chem
January 2025
Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
Surfactant-modified biochar is a viable adsorbent for eliminating Cr(VI) from synthetic wastewater. The biochar obtained from the zea mays plant (BC) was tailored with sodium dodecyl sulfate (SDS) as an anionic surfactant forming SDS-BC adsorbent. Different controlling conditions have been evaluated including pH of the solution, biomass concentration, primary Cr(VI) concentration, time of adsorption, and temperature.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Chemical Engineering, BITS Pilani Hyderabad Campus, Hyderabad, 500078, India. Electronic address:
In this work, a novel adsorbent from alginate, zeolite and biochar has been made through one-pot synthesis route with highly compatible Sodium Dodecyl Sulphate (SDS) modification. This gave ultra-high Ni removal of 1205 mg/g in batch mode while treating almost 200 L of solution in column mode with 1171 mg/g capacity, which are the one of the highest reported values. The Point of Zero Charge (pH) for Ni removal was determined to be 5, with optimal removal efficiency being observed at pH 7, indicating a negative surface charge of the ABPC beads, which aligns with the anionic charge provided by SDS enhancement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!