How the COVID-19 Pandemic Impacted Oncological Molecular Diagnosis: A Picture from a National Reference Center for Molecular Pathology.

Biomed Res Int

IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto/ I3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.

Published: October 2020

Introduction: The Portuguese healthcare system had to adapt at short notice to the COVID-19 pandemic. We implemented workflow changes to our molecular pathology laboratory, a national reference center, to maximize safety and productivity. We assess the impact this situation had on our caseload and what conclusions can be drawn about the wider impact of the pandemic in oncological therapy in Portugal. . We reviewed our database for all oncological molecular tests requested between March and April of 2019 and 2020. For each case, we recorded age, sex, region of the country, requesting institution, sample type, testing method, and turnaround time (TAT). A comparison between years was made.

Results: The total number of tests decreased from 421 in 2019 to 319 in 2020 ( = 0.0027). The greatest reduction was in clinical trial-related cases. Routine cases were similar between years (267 vs. 256). TAT was higher in 2019 (mean 15 days vs. 12.3 days; = 0.0003). Medium- to large-sized public hospitals in the north of the country were mostly responsible for the reduction in cases ( = 0.0153).

Conclusions: Case reduction was observed at hospitals that have mostly been involved in the treatment of COVID-19 and in the north of the country, the region worst-hit by the pandemic. Similar to other studies, our TAT decreased, even with a similar number of routine cases. Thus, we conclude that it is possible to successfully adapt the workflow of a molecular pathology laboratory to new safety standards without losing efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7537698PMC
http://dx.doi.org/10.1155/2020/8397053DOI Listing

Publication Analysis

Top Keywords

molecular pathology
12
covid-19 pandemic
8
oncological molecular
8
national reference
8
reference center
8
pathology laboratory
8
routine cases
8
north country
8
molecular
5
pandemic impacted
4

Similar Publications

Pathological diagnosis of central nervous system tumours in adults: what's new?

Pathology

December 2024

Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.

In the course of the last decade, the pathological diagnosis of many tumours of the central nervous system (CNS) has transitioned from a purely histological to a combined histological and molecular approach, resulting in a more precise 'histomolecular diagnosis'. Unfortunately, translation of this refinement in CNS tumour diagnostics into more effective treatment strategies is lagging behind. There is hope though that incorporating the assessment of predictive markers in the pathological evaluation of CNS tumours will help to improve this situation.

View Article and Find Full Text PDF

Single nucleotide variations (SNVs) and polymorphisms (SNPs) are characteristic biomarkers in various biological contexts, including pathogen drug resistances and human diseases. Tools that lower the implementation barrier of molecular SNV detection methods would provide greater leverage of the expanding SNP/SNV database. The oligonucleotide ligation assay (OLA) is a highly specific means for detection of known SNVs and is especially powerful when coupled with polymerase chain reaction (PCR).

View Article and Find Full Text PDF

Chapter 13: 2022 WHO CLASSIFICATION OF PARATHYROID TUMORS.

Ann Endocrinol (Paris)

January 2025

Institute of Pathology CHU Lille, University of Lille, 59000 Lille cedex, France. Electronic address:

The latest 2022 WHO classification of the parathyroid tumors incorporates recent data on parathyroid pathophysiology, in particular from genetic sequencing. It highlights histological features potentially indicative of underlying genetic abnormalities, because of their implications for patient management. Immunohistochemical markers can help characterize parathyroid lesions and molecular screening.

View Article and Find Full Text PDF

High-risk human papillomavirus E6 oncoprotein is a model system for the recognition and degradation of cellular p53 tumor suppressor protein. There remains a gap in the understanding of the ubiquitin transfer reaction, including placement of the E6AP catalytic HECT domain of the ligase concerning the p53 substrate and how E6 itself is protected from ubiquitination. We determined the cryoelectron microscopy (cryo-EM) structure of the E6AP/E6/p53 complex, related the structure to in vivo modeling of the tri-molecular complex, and identified structural interactions associated with activation of the ubiquitin ligase function.

View Article and Find Full Text PDF

Evaluation of a next generation sequencing assay for Hepatitis B antiviral drug resistance on the oxford nanopore system.

J Clin Virol

January 2025

Division of Medical Microbiology and Virology, St. Paul's Hospital, Providence Health Care, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada. Electronic address:

Background: Next-generation sequencing (NGS) for Hepatitis B virus (HBV) antiviral resistance (AVR) testing is a highly sensitive diagnostic method, able to detect low-level mutant subpopulations. Our clinical virology laboratory previously transitioned from DNA hybridization (INNO-LiPA) to NGS, initially with the GS Junior System and subsequently the MiSeq. The Oxford Nanopore Technology (ONT) sequencing system was evaluated for HBV resistance testing, with regards to sequencing accuracy and turn-around time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!