Introduction: Measurement of an- hippocampal area or volume is useful in clinical practice as a supportive aid for diagnosis of Alzheimer's disease. Since it is time-consuming and not simple, it is not being used very often. We present a simplified protocol for hippocampal atrophy evaluation based on a single optimal slice in Alzheimer's disease.

Methods: We defined a single optimal slice for hippocampal measurement on brain magnetic resonance imaging (MRI) at the plane where the amygdala disappears and only the hippocampus is present. We compared an absolute area and volume of the hippocampus on this optimal slice between 40 patients with Alzheimer disease and 40 age-, education- and gender-mateched elderly controls. Furthermore, we compared these results with those relative to the size of the brain or the skull: the area of the optimal slice normalized to the area of the brain at anterior commissure and the volume of the hippocampus normalized to the total intracranial volume.

Results: Hippocampal areas on the single optimal slice and hippocampal volumes on the left and right in the control group were significantly higher than those in the AD group. Normalized hippocampal areas and volumes on the left and right in the control group were significantly higher compared to the AD group. Absolute hippocampal areas and volumes did not significantly differ from corresponding normalized hippocampal areas as well as normalized hippocampal volumes using comparisons of areas under the receiver operating characteristic curves.

Conclusion: The hippocampal area on the well-defined optimal slice of brain MRI can reliably substitute a complicated measurement of the hippocampal volume. Surprisingly, brain or skull normalization of these variables does not add any incremental differentiation between Alzheimer disease patients and controls or give better results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7532424PMC
http://dx.doi.org/10.1155/2020/5894021DOI Listing

Publication Analysis

Top Keywords

optimal slice
24
hippocampal areas
16
hippocampal
12
hippocampal area
12
single optimal
12
normalized hippocampal
12
slice brain
8
brain magnetic
8
magnetic resonance
8
resonance imaging
8

Similar Publications

In order to improve the drying quality of winter jujube slices and find the best drying process parameters, RF + HA (radio frequency combined hot air) drying technology was used in this study to study the effects of plate spacing, RF application time, and RF interval time on the quality of winter jujube slices. Vitamin C () content, red and green value (), and drying rate () were used as quality indexes, and the changing trend of texture properties was analyzed. According to the conclusion of the single-factor experiment, the orthogonal experiment is carried out, and the parameters of each factor in the orthogonal experiment are optimized by the comprehensive balance method and matrix analysis method.

View Article and Find Full Text PDF

Potential for reduction of radiation dose in the assessment of the lead orientation in directional deep brain stimulation electrodes.

Eur J Radiol

January 2025

Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; Fraunhofer Institute for Laser Technology (ILT), 52074 Aachen, Germany.

Purpose: Directional deep brain stimulation (dDBS) relies on electrodes steering the stimulation field in a specific direction. Post implantation, however, the intended and real orientation of the lead frequently deviates e.g.

View Article and Find Full Text PDF

Background: The rising incidence of parotid gland tumors, with a focus on pleomorphic adenomas (PMA) and Warthin tumors (WT), necessitates accurate preoperative distinction due to their treatment variability and PMA's malignant potential. Traditional imaging, while valuable, has limited accuracy. This study employs multi-slice computed tomography (MSCT) radiomics coupled with serum alpha-L-fucosidase (AFU) levels to develop a diagnostic model aimed at elevating clinical discernment and precision therapy delivery.

View Article and Find Full Text PDF

The potential of photon-counting CT for the improved precision of lung nodule radiomics.

Phys Med Biol

January 2025

Department of Radiology, Duke University, Suite 302 Hock Plaza, 2424 Erwin Rd, Durham, North Carolina, 27708-0187, UNITED STATES.

Lung nodule appearance may provide prognostic information, as the presence of spiculation increases the suspicion of a nodule being cancerous. Spiculations can be quantified using morphological radiomics features extracted from CT images. Radiomics features can be affected by the acquisition parameters and scanner technologies; thus, it is essential to identify imaging conditions that provide reliable measurements, particularly for emerging technologies like photon-counting CT.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) is an invaluable method of choice for anatomical and functional in vivo imaging of the brain. Still, accurate delineation of the brain structures remains a crucial task of MR image evaluation. This study presents a novel analytical algorithm developed in MATLAB for the automatic segmentation of cerebrospinal fluid (CSF) spaces in preclinical non-contrast MR images of the mouse brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!