On March 11, 2020, the World Health Organization declared COVID-19 infection as a pandemic. Since it is a novel virus, there are basically no proven drugs or therapies; although many laboratories in different countries are working to develop a vaccine, it will take time to make it available. Passive immunization is the therapy born from the intuition of Behring and Kisato in the late 19 century. It was widely used for the treatment of bacterial infections until the discovery of antibiotics, as well as during the viral pandemics of the 20 century and of the beginning of the 21; it still has clinical applications (e.g., tetanus prevention). This paper summarizes the basic principles of passive immunization, with particular reference to convalescent plasma. The literature concerning its use during past epidemics and the results of the first clinical studies concerning its use during the current pandemic are discussed too. A large section is dedicated to the analysis of the possible, although rare, side effects. Recently, in 2017, the WHO Blood Regulators Network (BRN) published a position paper, recommending convalescent plasma as the first-choice treatment to be tested in the absence of authorized drugs; however, this strategy has not been followed. In the current epidemic, the principle of passive immunization through convalescent plasma has been applied in several circumstances and particularly in patients with serious complications. The first reported results are encouraging and confirm the effectiveness of plasma therapy and its safety. Also, the FDA has proposed plasma treatment in order to face the increasingly complex situation and manage patients with serious or immediately life-threatening COVID-19 disease. Several studies and clinical programs are still ongoing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512050 | PMC |
http://dx.doi.org/10.1155/2020/2606058 | DOI Listing |
J Infect Dis
January 2025
Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Background: The emergence of new SARS-CoV-2 variants poses a new challenge for the treatment of immunocompromised patients against COVID-19. In this context, high titer COVID-19 Convalescent Plasma (CCP) is one of the few available therapeutics for these patients. We have revisited the selection of CCP samples and its efficacy against Omicron XBB.
View Article and Find Full Text PDFFront Immunol
January 2025
Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.
Introduction: Upon infection, T cell-driven B cell responses in GC reactions induce memory B cells and antibody-secreting cells that secrete protective antibodies. How formation of specifically long-lived plasma cells is regulated via the interplay between specific B and CD4+ T cells is not well understood. Generally, antibody levels decline over time after clearance of the primary infection.
View Article and Find Full Text PDFThorax
December 2024
Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda.
The generalisability of critical illness molecular phenotypes to low- and middle-income countries (LMICs) is unknown. We show that molecular phenotypes derived in high-income countries (hyperinflammatory and hypoinflammatory, reactive and uninflamed) stratify sepsis patients in Uganda by physiological severity, mortality risk and dysregulation of key pathobiological domains. A classifier model including data available at the LMIC bedside modestly discriminated phenotype assignment (area under the receiver operating characteristic curve (AUROC) 0.
View Article and Find Full Text PDFbioRxiv
December 2024
Stanford Blood Center, Stanford Health Care, Stanford, California, USA.
Background And Objectives: Apheresis platelets products and plasma are essential for medical interventions, but both still have inherent risks associated with contamination and viral transmission. Platelet products are vulnerable to bacterial contamination due to storage conditions, while plasma requires extensive screening to minimize virus transmission risks. Here we investigate rapid irradiation to sterilizing doses for bacteria and viruses as an innovative pathogen reduction technology.
View Article and Find Full Text PDFMonaldi Arch Chest Dis
December 2024
Lab Operations and Microbiology, Agilus Diagnostics, Fortis Hospital, Noida, Uttar Pradesh.
Convalescent plasma therapy (CPT) is one of the treatment modalities used for COVID-19. Initial smaller studies showed the usefulness of CPT in COVID-19, but larger studies showed that it is not effective. This is a retrospective observational study conducted between 1st June 2020 and 31st July 2021 at a tertiary hospital in Noida, India.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!