1'-(2-Acryloxyethyl)-3,3'-dimethyl-6-nitrospiro[2 -1-benzopyran-2,2'-indoline] (SPA) was synthesized and grafted onto a water-soluble carboxymethyl chitin (CMCH) macromolecule to prepare a photochromic copolymer (CMCH-g-SPA). The structure of CMCH-g-SPA was characterized by Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric (TG) analysis, X-ray diffraction (XRD) analysis, water-solubility evaluation, and UV-vis spectroscopy. XRD patterns of CMCH-g-SPA revealed that grafting copolymerization disrupts the CMCH semicrystalline structure, thus improving water solubility. UV-vis spectroscopy results supported the negative photochromic behavior of the merocyanine (MC) form of CMCH-g-SPA (CMCH-g-MCA) present in a water solution of the target copolymer. In addition to high solvent polarity, the intermolecular and intramolecular electrostatic attraction between the indolenine cation and the COO anion were found to be influencing factors, which stabilize these MC form of spiropyran groups grafted onto CMCH. In a water solution, visible light bleaching was completed over a short period (8 minutes) under artificial visible light irradiation and the thermal coloration reaction, whose rate constant at 25 °C was 4.64 × 10 s, which fit the first-order reaction equation. After ten photochromic cycles in water solution, the relative absorption intensity of CMCH-g-MCA decreased by 7.92%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7473278 | PMC |
http://dx.doi.org/10.1080/15685551.2020.1796362 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
Dissolution of CO in water followed by the subsequent hydrolysis reactions is of great importance to the global carbon cycle, and carbon capture and storage. Despite numerous previous studies, the reactions are still not fully understood at the atomistic scale. Here, we combined ab initio molecular dynamics (AIMD) simulations with Markov state models to elucidate the reaction mechanisms and kinetics of CO in supercritical water both in the bulk and nanoconfined states.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Ewing Marion Kauffman Foundation, Kansas City, MO 64110.
Research that better aligns policy, practice, and research communities is gaining momentum around the world. This includes engaged research strategies that bring partners, and their diverse perspectives and kinds of knowledge, together to shape research agendas with on-the-ground-needs and to create dynamic problem-solving processes. These approaches aim to generate more equitable and effective solutions to societal challenges.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri 65211, United States.
Recent regulations on perfluorinated compounds in drinking water underscore the need for a deeper understanding of the formation of perfluorinated compounds from polyfluoroalkyl substances during chlorine disinfection. Among the compounds investigated in this study, N-(3-(dimethylaminopropan-1-yl)perfluoro-1-hexanesulfonamide (N-AP-FHxSA) underwent rapid transformation during chlorination. Within an hour, it produced quantitative yields of various poly- and per-fluorinated products, including perfluorohexanoic acid (PFHxA).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max Planck Str. 1, 21502, Geesthacht, Germany.
This work proposes a fuel cell power supply system for underwater applications (e.g., autonomous underwater vehicles), where artificial gills, based on a polymer membrane, harvest the required oxygen from the ambient water.
View Article and Find Full Text PDFDalton Trans
January 2025
Karlsruhe Institute of Technology (KIT), Institute for Inorganic Chemistry, Engesserstrasse 15, 76131 Karlsruhe, Germany.
(Eu[PTC])(Eu[TREN-1,2-HOPO]) inorganic-organic hybrid nanoparticles (IOH-NPs) contain Eu, tris[(1-hydroxy-2-oxo-1,2-dihydropyridine-6-carboxamido)ethyl]amine (TREN-1,2-HOPO) and perylene-3,4,9,10-tetracarboxylate (PTC). The IOH-NPs are prepared in water and exhibit a rod-type shape, with a length of 60 nm and a diameter of 5 nm. Particle size and chemical composition are examined by different methods (SEM, DLS, FT-IR, TG, C/H/N analysis).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!