L-arginine/NOS/NO signaling pathway plays a critical role in controlling variety of vascular diseases. However, whether NOS inhibition by L-NAME suppresses late embryonic development is undefined. The aim of this study is to determine whether NOS inhibition by L-NAME is critical for late embryonic rat hind limb development. The pregnant rat at E13.5 administrated L-NAME by consecutive intraperitoneal injection. The embryos been harvested from E16.5 to E 20.5. Hematoxylin and Eosin Staining, Immunofluorescence and Immunohistochemistry performed to determine hind limb Vasculogenesis, HUVEC culture, Adenoviral PFKFB3 infection, Real time PCR and western blot were performed to determine whether L-arginine/NOS/NO pathway controlling late embryonic hind limb development through PFKFB3 mediated angiogenetic pathway. NOS inhibition by L-NAME resulting in late embryonic hind limb developmental defects characterized by severe hemorrhage. The in vivo studies showed that NOS inhibition strongly suppressed hind limb angiogenetic remodeling by impairing differentiation of endothelial cells and smooth muscle cells, and extracellular matrix synthesis. For underlie mechanism, our studies indicated that L-NAME treatment dramatically suppresses PFKFB3 expression in hematopoietic progenitor cells, tubulogenetic endothelial cells and smooth muscle cells. Knockdown of PFKFB3 dramatically inhibits the expression of angiogenetic genes, as well as tubulogenesis and extracellular matrix related genes. Taken together, our data in this study demonstrated that L-arginine-eNOS-NO pathway is important for rat hind limb development during late embryonic stage. This could be both a useful animal model and a promising therapeutic treatment for defects of late embryonic developmental hind limbs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7541470PMC
http://dx.doi.org/10.1038/s41598-020-74011-1DOI Listing

Publication Analysis

Top Keywords

hind limb
28
late embryonic
24
rat hind
12
inhibition l-name
12
limb development
12
hind
8
limb developmental
8
developmental defects
8
pfkfb3 mediated
8
mediated angiogenetic
8

Similar Publications

Background And Aims: Neuro-ischemic ulcers (NIU) present a substantial clinical and economic burden on the healthcare systems. This study aims to evaluate their healing rate, associated healthcare resource utilization, and prognostic factors influencing healing.

Methods: Consecutive patients attended specialist clinics or admitted to wards in three tertiary hospitals for new or existing NIUs from November 2019 to November 2021 were eligible for this study.

View Article and Find Full Text PDF

Background And Aims: When dealing with severely calcified lesions in endovascular therapy (EVT) for lower extremity artery disease (LEAD), navigating through severely calcified chronic total occlusion (CTO) using hard-tip guidewires can be challenging. To address this issue, we employed a novel highly intensive penetration (HIP) technique. This technique involves modifying the tail of a 0.

View Article and Find Full Text PDF

Purpose We aimed to report an innovative single-site endoscopic surgery for soft tissue lesions performed at our center. Methods All patients who underwent soft tissue surgery were reviewed. All consecutive patients who underwent single-site endoscopic surgery between September 2019 and March 2024 were included in the study.

View Article and Find Full Text PDF

Objective: This study aims to investigate the sources of later response in epidural spinal recordings (ESRs) obtained from implanted leads during spinal cord stimulation, a topic has not been widely studied in previous research.

Methods: Two patients with lower back and lower extremity pain underwent SCS implantation with intraoperative neuromonitoring (IONM). The timing of extracted peaks in ESRs and intramuscular electromyography (EMG) recordings were analyzed and compared to a Monte Carlo simulation for synchronization analysis.

View Article and Find Full Text PDF

Objective: The purpose of this study was to investigate the timing and mode of failure of metallic screw-type suture anchors used to attach artificial tendons to bone in an New Zealand White rabbit model.

Study Design: Metal suture anchors with braided composite sutures of varying sizes (United States Pharmacopeia (USP) size 1, 2, or 5) were used to secure artificial tendons replacing both the Achilles and tibialis cranialis tendons in 12 female New Zealand White rabbits. Artificial tendons were implanted either at the time of (immediate replacement,  = 8), or four/five weeks after (delayed replacement,  = 4) resection of the biological tendon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!