Administration of erlotinib in apple juice overcomes decreased absorption in a rat model of gastric acid suppression.

Drug Metab Pharmacokinet

Department of Clinical Pharmacokinetics, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan; Department of Hospital Pharmacy, University Hospital, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan. Electronic address:

Published: December 2020

AI Article Synopsis

  • - Erlotinib's absorption is negatively affected when patients use gastric acid suppression therapy, which makes it less soluble in higher pH conditions.
  • - Research found that erlotinib's solubility increased in acidic solutions, particularly in apple juice, compared to tap water and HCl solutions.
  • - When erlotinib was administered in apple juice or acidic conditions to rats on gastric acid suppression, plasma levels were significantly higher, suggesting that using acidic beverages could enhance erlotinib absorption in affected patients.

Article Abstract

Erlotinib shows pH-dependent solubility and its absorption is decreased in patients receiving gastric acid suppression therapy. Here, we examined whether administration of erlotinib in acidic solutions would improve its solubility and absorption characteristics. In vitro, the solubility of erlotinib in HCl solution increased with decreasing pH, and was far higher than that in tap water. The solubility in apple juice (pH 3.7) was higher than that in HCl solution of the same pH. In vivo, the absorption of erlotinib administered in tap water was decreased in omeprazole-treated (OP) rats, used as a model of gastric acid suppression, compared to control rats. In the OP rats, the plasma concentrations in the groups given erlotinib in apple juice and in HCl (pH 3.7) were significantly higher than in the tap water group in the initial phase of absorption. AUC in OP rats given erlotinib in apple juice was 1.69-fold larger than that of control rats given erlotinib in tap water, and 2.49-fold larger than that of OP rats given erlotinib in tap water. Thus, administration of erlotinib in an acidic beverage to patients receiving gastric acid suppression therapy might be effective to increase solubility and absorption.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dmpk.2020.08.003DOI Listing

Publication Analysis

Top Keywords

tap water
20
apple juice
16
gastric acid
16
acid suppression
16
administration erlotinib
12
erlotinib apple
12
solubility absorption
12
rats erlotinib
12
erlotinib
9
model gastric
8

Similar Publications

Visible-Light Photo-Iniferter Polymerization of Molecularly Imprinted Polymers for Direct Integration with Nanotransducers.

Small Methods

January 2025

Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy.

Molecularly Imprinted Polymers (MIPs) have gained prominence as synthetic receptors, combining simplicity of synthesis with robust molecular recognition akin to antibodies and enzymes. One of their main application areas is chemical sensing. However, direct integration of MIPs with nanostructured transducers, crucial for enhancing sensing capabilities and broadening MIPs sensing applications, remains limited.

View Article and Find Full Text PDF

Application of PS2M Aptamer as Receptor Layer for Electrochemical Detection of Lead Ions.

Biosensors (Basel)

January 2025

Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.

Since lead can cause severe effects on living organisms' health and life, the regular monitoring of Pb levels in water and soil is of particular significance. Recently, it was shown that lead ions can also be detected using affinity-based biosensors, namely, using aptamers as recognition elements. In most cases, thrombin binding aptamer (TBA) was utilized; however, there are more examples of DNA aptamers which could also serve that purpose.

View Article and Find Full Text PDF

A Sensitive and Selective Electrochemical Aptasensor for Carbendazim Detection.

Biosensors (Basel)

January 2025

School of Science, Computing, and Engineering Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.

Carbendazim (CBZ) is used to prevent fungal infections in agricultural crops. Given its high persistence and potential for long-term health effects, it is crucial to quickly identify pesticide residues in food and the environment in order to mitigate excessive exposure. Aptamer-based sensors offer a promising solution for pesticide detection due to their exceptional selectivity, design versatility, ease of use, and affordability.

View Article and Find Full Text PDF

Background: Millions worldwide are exposed to elevated levels of arsenic that significantly increase their risk of developing atherosclerosis, a pathology primarily driven by immune cells. While the impact of arsenic on immune cell populations in atherosclerotic plaques has been broadly characterized, cellular heterogeneity is a substantial barrier to in-depth examinations of the cellular dynamics for varying immune cell populations.

Objectives: This study aimed to conduct single-cell multi-omics profiling of atherosclerotic plaques in apolipoprotein E knockout () mice to elucidate transcriptomic and epigenetic changes in immune cells induced by arsenic exposure.

View Article and Find Full Text PDF

Bimetallic metal-organic frameworks as electrode modifiers for enhanced electrochemical sensing of chloramphenicol.

Mikrochim Acta

January 2025

Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.

An electrochemical sensor is presented for the detection of the chloramphenicol (CAP) based on a bimetallic MIL-101(Fe/Co) MOF electrocatalyst. The MIL-101(Fe/Co) was prepared by utilizing mixed-valence Fe (III) and Co (II) as metal nodes and terephthalic acid as ligands with a simple hydrothermal method and characterized by SEM, TEM, XRD, FTIR, and XPS. Electrochemical measurements such as electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) showed that bimetallic MIL-101(Fe/Co) had the faster electron transfer, larger electroactive area, and higher electrocatalytic activity compared with  their monometallic counterparts due to the strong synergistic effect between bimetals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!