Profiling pro-neural to mesenchymal transition identifies a lncRNA signature in glioma.

J Transl Med

Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, Liaoning, China.

Published: October 2020

Background: Molecular classification has laid the framework for exploring glioma biology and treatment strategies. Pro-neural to mesenchymal transition (PMT) of glioma is known to be associated with aggressive phenotypes, unfavorable prognosis, and treatment resistance. Recent studies have highlighted that long non-coding RNAs (lncRNAs) are key mediators in cancer mesenchymal transition. However, the relationship between lncRNAs and PMT in glioma has not been systematically investigated.

Methods: Gene expression profiles from The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), GSE16011, and Rembrandt with available clinical and genomic information were used for analyses. Bioinformatics methods such as weighted gene co-expression network analysis (WGCNA), gene set enrichment analysis (GSEA), Cox analysis, and least absolute shrinkage and selection operator (LASSO) analysis were performed.

Results: According to PMT scores, we confirmed that PMT status was positively associated with risky behaviors and poor prognosis in glioma. The 149 PMT-related lncRNAs were identified by WGCNA analysis, among which 10 (LINC01057, TP73-AS1, AP000695.4, LINC01503, CRNDE, OSMR-AS1, SNHG18, AC145343.2, RP11-25K21.6, RP11-38L15.2) with significant prognostic value were further screened to construct a PMT-related lncRNA risk signature, which could divide cases into two groups with distinct prognoses. Multivariate Cox regression analyses indicated that the signature was an independent prognostic factor for high-grade glioma. High-risk cases were more likely to be classified as the mesenchymal subtype, which confers enhanced immunosuppressive status by recruiting macrophages, neutrophils, and regulatory T cells. Moreover, six lncRNAs of the signature could act as competing endogenous RNAs to promote PMT in glioblastoma.

Conclusions: We profiled PMT status in glioma and established a PMT-related 10-lncRNA signature for glioma that could independently predict glioma survival and trigger PMT, which enhanced immunosuppression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7539462PMC
http://dx.doi.org/10.1186/s12967-020-02552-0DOI Listing

Publication Analysis

Top Keywords

mesenchymal transition
12
glioma
10
pro-neural mesenchymal
8
signature glioma
8
pmt glioma
8
genome atlas
8
pmt status
8
pmt
7
signature
5
analysis
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!