We introduce fluoride-selective anion exchange resin sorbents as sensitisers into membranes for water-gated field effect transistors (WGTFTs). Sorbents were prepared via metal (La or Al)-loading of a commercial macroporous aminophosphonic acid resin, Puromet MTS9501, and were filled into a plasticised poly(vinyl chloride) (PVC) phase transfer membrane. We found a potentiometric response (membrane potential leading to WGTFT threshold shift) to fluoride following a Langmuir-Freundlich (LF) adsorption isotherm with saturated membrane potential up to ~480 mV, extremely low characteristic concentration c = 1/K, and picomolar limit of detection (LoD), even though ion exchange did not build up charge on the resin. La-loading gave a superior response compared to Al-loading. Membrane potential characteristics were distinctly different from charge accumulating sensitisers (e.g., organic macrocycles) but similar to the Cs (cation) selective ion-exchanging zeolite mineral 'mordenite'. We propose a mechanism for the observed threshold shift and investigate interference from co-solutes. Strong interference from carbonate was brought under control by 'diluting' metal loading in the resin. This work sets a template for future studies using an entirely new 'family' of sensitisers in applications where very low limit of detection is essential such as for ions of arsenic, mercury, copper, palladium, and gold.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601498PMC
http://dx.doi.org/10.3390/mi11100923DOI Listing

Publication Analysis

Top Keywords

membrane potential
12
ion exchange
8
exchange resin
8
threshold shift
8
limit detection
8
resin
5
water-gated transistor
4
transistor ion
4
resin potentiometric
4
potentiometric fluoride
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!