The integral role of calmodulin in the amyloid pathway and neurofibrillary tangle formation in Alzheimer's disease was first established leading to the "Calmodulin Hypothesis". Continued research has extended our insight into the central function of the small calcium sensor and effector calmodulin and its target proteins in a multitude of other events associated with the onset and progression of this devastating neurodegenerative disease. Calmodulin's involvement in the contrasting roles of calcium/CaM-dependent kinase II (CaMKII) and calcineurin (CaN) in long term potentiation and depression, respectively, and memory impairment and neurodegeneration are updated. The functions of the proposed neuronal biomarker neurogranin, a calmodulin binding protein also involved in long term potentiation and depression, is detailed. In addition, new discoveries into calmodulin's role in regulating glutamate receptors (mGluR, NMDAR) are overviewed. The interplay between calmodulin and amyloid beta in the regulation of PMCA and ryanodine receptors are prime examples of how the buildup of classic biomarkers can underly the signs and symptoms of Alzheimer's. The role of calmodulin in the function of stromal interaction molecule 2 (STIM2) and adenosine A2A receptor, two other proteins linked to neurodegenerative events, is discussed. Prior to concluding, an analysis of how targeting calmodulin and its binding proteins are viable routes for Alzheimer's therapy is presented. In total, calmodulin and its binding proteins are further revealed to be central to the onset and progression of Alzheimer's disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582761 | PMC |
http://dx.doi.org/10.3390/ijms21197344 | DOI Listing |
J Chem Inf Model
December 2024
Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey.
Genetically encoded fluorescent biosensors (GEFBs) have become indispensable tools for visualizing biological processes A typical GEFB is composed of a sensory domain (SD) that undergoes a conformational change upon ligand binding or enzymatic reaction; the SD is genetically fused with a fluorescent protein (FP). The changes in the SD allosterically modulate the chromophore environment whose spectral properties are changed. Single fluorescent (FP)-based biosensors, a subclass of GEFBs, offer a simple experimental setup; they are easy to produce in living cells, structurally stable, and simple to use due to their single-wavelength operation.
View Article and Find Full Text PDFRSC Chem Biol
December 2024
School of Chemistry and Chemical Engineering, University of South China Hengyang 421001 China +86-743-8578079.
Androglobin (Adgb) was discovered as the fifth mammalian globin, but its structure and function remain elusive. In this study, the heme-binding globin domain of Adgb was expressed and its interaction with calmodulin (CaM) was investigated. The protein structure of Adgb and its complex with CaM were predicted using AlphaFold3 and HDOCK.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Japan. Electronic address:
The mechanistic target of rapamycin complex 1 (mTORC1) functions as a master regulator of cell growth and proliferation. We previously demonstrated that intracellular calcium ion (Ca) concentration modulates the mTORC1 pathway via binding of the Ca sensor protein calmodulin (CaM) to tuberous sclerosis complex 2 (TSC2), a critical negative regulator of mTORC1. However, the precise molecular mechanism by which Ca/CaM modulates mTORC1 activity remains unclear.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
Background: Calcium-dependent protein kinases (CDPKs), play multiple roles in plant development, growth and response to bio- or abiotic stresses. Calmodulin-like domains typically contain four EF-hand motifs for Ca²⁺ binding. The CDPK gene family can be divided into four subgroups in Arabidopsis, and it has been identified in many plants, such as rice, tomato, but has not been investigated in alfalfa (Medicago sativa subsp.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, Mumbai, Maharashtra, India.
Rubella virus (RUBV) is responsible for causing rashes, lymphadenopathy, and fever which are the hallmarks of an acute viral illness called Rubella. For RUBV replication, the non-structural polyprotein p200 must be cleaved by the rubella papain-like protease (RubPro) into the multifunctional proteins p150 and p90. Hence, RubPro is an attractive target for anti-viral drug discovery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!