We leverage the SM/J mouse to understand glycemic control in obesity. High-fat-fed SM/J mice initially develop poor glucose homeostasis relative to controls. Strikingly, their glycemic dysfunction resolves by 30 weeks of age despite persistent obesity. The mice dramatically expand their brown adipose depots as they resolve glycemic dysfunction. This occurs naturally and spontaneously on a high-fat diet, with no temperature or genetic manipulation. Removal of the brown adipose depot impairs insulin sensitivity, indicating that the expanded tissue is functioning as an insulin-stimulated glucose sink. We describe morphological, physiological, and transcriptomic changes that occur during the brown adipose expansion and remission of glycemic dysfunction, and focus on Sfrp1 (secreted frizzled-related protein 1) as a compelling candidate that may underlie this phenomenon. Understanding how the expanded brown adipose contributes to glycemic control in SM/J mice will open the door for innovative therapies aimed at improving metabolic complications in obesity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7594587PMC
http://dx.doi.org/10.1016/j.celrep.2020.108237DOI Listing

Publication Analysis

Top Keywords

brown adipose
20
glycemic dysfunction
16
sm/j mice
12
adipose expansion
8
expansion remission
8
remission glycemic
8
glycemic control
8
glycemic
6
brown
5
dysfunction
4

Similar Publications

Dietary caloric input and tumor growth accelerate senescence and modulate liver and adipose tissue crosstalk.

Commun Biol

January 2025

The MetaboliZSm GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Metabolic alterations are related to tumorigenesis and other age-related diseases that are accelerated by "Westernized" diets. In fact, hypercaloric nutrition is associated with an increased incidence of cancers and faster aging. Conversely, lifespan-extending strategies, such as caloric restriction, impose beneficial effects on both processes.

View Article and Find Full Text PDF

Menopause leads to a decline in estrogen levels, resulting in significant metabolic alterations that increase the risk of developing metabolic syndrome-a cluster of conditions including central obesity, insulin resistance, dyslipidemia, and hypertension. Traditional interventions such as hormone replacement therapy carry potential adverse effects, and lifestyle modifications alone may not suffice for all women. This review explores the potential role of palmitoylethanolamide (PEA), an endogenous fatty acid amide, in managing metabolic syndrome during the postmenopausal period.

View Article and Find Full Text PDF

The failure of the fight against obesity makes us turn to new goals in its treatment. Now, brown adipose tissue has attracted attention as a promising target for the treatment of obesity and associated metabolic disorders such as insulin resistance, dyslipidemia, and glucose tolerance disorders. Meanwhile, the expansion of our knowledge has led to awareness about two rather different subtypes: classic brown and beige (inducible brown) adipose tissue.

View Article and Find Full Text PDF

Background/objectives: Brown adipose tissue (BAT) plays a crucial role in energy expenditure and thermoregulation and has thus garnered interest in the context of metabolic diseases. Segmentation in medical imaging is time-consuming and prone to inter- and intra-operator variability. This study aims to develop an automated BAT segmentation method using the nnU-Net deep learning framework, integrated into the TotalSegmentator software, and to evaluate its performance in a large cohort of patients with lymphoma.

View Article and Find Full Text PDF

Obesity, influenced by environmental pollutants, can lead to complex metabolic disruptions. This systematic review and meta-analysis examined the molecular mechanisms underlying metabolically abnormal obesity caused by exposure to a high-fat diet (HFD) and fine particulate matter (PM). Following the PRISMA guidelines, articles from 2019 to 2024 were gathered from Scopus, Web of Science, and PubMed, and a random-effects meta-analysis was performed, along with subgroup analyses and pathway enrichment analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!