Purpose: Affecting children by age 3, primary congenital glaucoma (PCG) can cause debilitating vision loss by the developmental impairment of aqueous drainage resulting in high intraocular pressure (IOP), globe enlargement, and optic neuropathy. TEK haploinsufficiency accounts for 5% of PCG in diverse populations, with low penetrance explained by variable dysgenesis of Schlemm's canal (SC) in mice. We report eight families with TEK-related PCG, and provide evidence for SVEP1 as a disease modifier in family 8 with a higher penetrance and severity.

Methods: Exome sequencing identified coding/splice site variants with an allele frequency less than 0.0001 (gnomAD). TEK variant effects were assayed in construct-transfected HEK293 cells via detection of autophosphorylated (active) TEK protein. An enucleated eye from an affected member of family 8 was examined via histology. SVEP1 expression in developing outflow tissues was detected by immunofluorescent staining of 7-day mouse anterior segments. SVEP1 stimulation of TEK expression in human umbilical vascular endothelial cells (HUVECs) was measured by TaqMan quantitative PCR.

Results: Heterozygous TEK loss-of-function alleles were identified in eight PCG families, with parent-child disease transmission observed in two pedigrees. Family 8 exhibited greater disease penetrance and severity, histology revealed absence of SC in one eye, and SVEP1:p.R997C was identified in four of the five affected individuals. During SC development, SVEP1 is secreted by surrounding tissues. SVEP1:p.R997C abrogates stimulation of TEK expression by HUVECs.

Conclusions: We provide further evidence for PCG caused by TEK haploinsufficiency, affirm autosomal dominant inheritance in two pedigrees, and propose SVEP1 as a modifier of TEK expression during SC development, affecting disease penetrance and severity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545080PMC
http://dx.doi.org/10.1167/iovs.61.12.6DOI Listing

Publication Analysis

Top Keywords

tek expression
12
primary congenital
8
congenital glaucoma
8
tek
8
tek haploinsufficiency
8
provide evidence
8
stimulation tek
8
disease penetrance
8
penetrance severity
8
svep1
6

Similar Publications

Purpose: Genome-wide association studies (GWAS) have identified multiple genetic loci associated with primary open-angle glaucoma (POAG). However, the mechanisms by which these loci contribute to POAG progression remain unclear. This study aimed to identify potential causative genes involved in the development of POAG.

View Article and Find Full Text PDF

Background: The Tie2/Ang pathway was found to be involved in forming tumor blood vessels in various tumors. The goal of this study was to evaluate the value of Tie2/Ang pathway as a novel biomarkers for the early detection of chronic hepatitis C virus (CHC)-related hepatocellular carcinoma (HCC). And the possibility of their future application in HCC treatment.

View Article and Find Full Text PDF

Cytosolic thiouridylase is a conserved cytoplasmic tRNA thiolase composed of two different subunits, CTU1 and CTU2. CTU2 serves as a scaffold protein, while CTU1 catalyzes the 2-thiolation at the 34th wobble uridine of the anticodon loop. tRNAGlnUUG, tRNAGluUUC, and tRNALysUUU are the tRNA substrates that are modified with a thiol group at the C2 positions (s2) by CTU1, and also with a methoxycarbonylmethyl group at the C5 positions (mcm5) by Elongator and ALKBH8.

View Article and Find Full Text PDF

Vascular anomalies (VA) refer to abnormal blood or lymphatic vessel architecture, most often as a result of dysregulated growth. Venous malformations (VM), a subgroup of VAs, are triggered by activating mutations in the Angiopoietin/TIE2-PI3K/AKT/mTOR signaling pathway with TIE2 L914F (gene name TEK) being one of the most frequent mutations in patients with VMs. Although systemic targeting of the overactivated pathway is possible, it would be a therapeutic advantage to restrict treatment to only the affected lesions.

View Article and Find Full Text PDF
Article Synopsis
  • Human induced pluripotent stem cells (hiPSCs) display clonal heterogeneity affecting their ability to differentiate into cardiomyocytes (CMs), necessitating a deeper understanding of these variations.
  • By analyzing multiple hiPSC clones from a single donor, researchers categorized them into productive (PC) and non-productive (NPC) groups based on their differentiation efficiency, uncovering distinct biological profiles.
  • Integrating RNA sequencing and chromatin accessibility data, the study identified biomarkers like TEK and SDR42E1 that are linked to CM differentiation potential, providing insights that could improve the selection of hiPSC clones for clinical use.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!