A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bayesian Approach for a Robust Speed-of-Sound Reconstruction Using Pulse-Echo Ultrasound. | LitMetric

Computed ultrasound tomography in echo mode (CUTE) is a promising ultrasound (US) based multi-modal technique that allows to image the spatial distribution of speed of sound (SoS) inside tissue using hand-held pulse-echo US. It is based on measuring the phase shift of echoes when detected under varying steering angles. The SoS is then reconstructed using a regularized inversion of a forward model that describes the relation between the SoS and echo phase shift. Promising results were obtained in phantoms when using a Tikhonov-type regularization of the spatial gradient (SG) of SoS. In-vivo, however, clutter and aberration lead to an increased phase noise. In many subjects, this phase noise causes strong artifacts in the SoS image when using the SG regularization. To solve this shortcoming, we propose to use a Bayesian framework for the inverse calculation, which includes a priori statistical properties of the spatial distribution of the SoS to avoid noise-related artifacts in the SoS images. In this study, the a priori model is based on segmenting the B-Mode image. We show in a simulation and phantom study that this approach leads to SoS images that are much more stable against phase noise compared to the SG regularization. In a preliminary in-vivo study, a reproducibility in the range of 10 ms was achieved when imaging the SoS of a volunteer's liver from different scanning locations. These results demonstrate the diagnostic potential of CUTE for example for the staging of fatty liver disease.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2020.3029286DOI Listing

Publication Analysis

Top Keywords

phase noise
12
sos
9
spatial distribution
8
phase shift
8
artifacts sos
8
sos images
8
phase
5
bayesian approach
4
approach robust
4
robust speed-of-sound
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!