To explore via systematic review the validation of uneventful post-surgical healing, associated with shorter and longer laser wavelength applications in minor oral surgery procedures. From April 28 to May 11, 2020, PubMed, Cochrane Database of Systemic Reviews, and Google Scholar search engines were applied to identify human clinical trials of photobiomodulation (PBM) therapy in clinical dentistry. The searches were carried out with reference to (1) dental laser wavelengths shorter than 650 nm; (2) wavelengths localized within the 2780-2940 nm; and (3) the 9300-10,600 nm range. Selected articles were further assessed by three independent reviewers for strict compliance with PRISMA guidelines and modified Cochrane Risk of Bias to determine eligibility. Using selection filters of randomized clinical trials, moderate/low risk of bias, and the applied period, and following PRISMA guidelines, 25 articles were selected and examined. A risk of bias was completed, where 11 out of 25 publications were classified as low risk of bias, and 14 out of 25 were classified as medium risk status. In total, 6 out of 13 (46% of) studies comparing the examined laser wavelengths with scalpel-based treatment showed positive results, whereas 6 out of 13 (46%) showed no difference, and only 1 out of 13 (7.7%) presented a negative outcome. In addition, 5 out of 6 (83% of) studies comparing the examined laser wavelengths with other diodes (808-980 nm) showed positive results, whereas 1 out of 6 (17%) had negative outcomes. A detailed and blinded examination of published studies has been undertaken, applying strict criteria to demonstrate research outcome data, which suggests positive or at worst neutral comparatives when a given laser wavelength system is used against an alternative control therapy. As such, substantiated evidence for laser surgery in delivering uneventful healing and analgesic effects, as an expression of a PBM-like (quasi-PBM) influence, has been shown.

Download full-text PDF

Source
http://dx.doi.org/10.1089/photob.2020.4847DOI Listing

Publication Analysis

Top Keywords

risk bias
16
laser wavelengths
12
systematic review
8
laser wavelength
8
clinical trials
8
prisma guidelines
8
studies comparing
8
comparing examined
8
examined laser
8
laser
6

Similar Publications

Artificial intelligence and machine learning capabilities in the detection of acute scaphoid fracture: a critical review.

J Hand Surg Eur Vol

January 2025

Clinical Scientific Computing, Guy's and St Thomas' NHS Foundation Trust, London, UK.

This paper discusses the current literature surrounding the potential use of artificial intelligence and machine learning models in the diagnosis of acute obvious and occult scaphoid fractures. Current studies have notable methodological flaws and are at high risk of bias, precluding meaningful comparisons with clinician performance (the current reference standard). Specific areas should be addressed in future studies to help advance the meaningful and clinical use of artificial intelligence for radiograph interpretation.

View Article and Find Full Text PDF

Clinical trials (CTs) often suffer from small sample sizes due to limited budgets and patient enrollment challenges. Using historical data for the CT data analysis may boost statistical power and reduce the required sample size. Existing methods on borrowing information from historical data with right-censored outcomes did not consider matching between historical data and CT data to reduce the heterogeneity.

View Article and Find Full Text PDF

Aim: The present study was conducted to determine the effect of non-pharmacological interventions before cataract surgery on preoperative anxiety.

Design: Systematic review and meta-analysis.

Methods: Five databases were systematically searched until 9 June, 2024.

View Article and Find Full Text PDF

Aims: Accurate prediction of clinical outcomes following percutaneous coronary intervention (PCI) is essential for mitigating risk and peri-procedural planning. Traditional risk models have demonstrated a modest predictive value. Machine learning (ML) models offer an alternative risk stratification that may provide improved predictive accuracy.

View Article and Find Full Text PDF

Aims: An explainable advanced electrocardiography (A-ECG) Heart Age gap is the difference between A-ECG Heart Age and chronological age. This gap is an estimate of accelerated cardiovascular aging expressed in years of healthy human aging, and can intuitively communicate cardiovascular risk to the general population. However, existing A-ECG Heart Age requires sinus rhythm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!