Nanoparticles that contain multiple materials connected through interfaces, often called heterostructured nanoparticles, are important constructs for many current and emerging applications. Such particles combine semiconductors, metals, insulators, catalysts, magnets, and other functional components that interact synergistically to enable applications in areas that include energy, nanomedicine, nanophotonics, photocatalysis, and active matter. To synthesize heterostructured nanoparticles, it is important to control all of the property-defining features of individual nanoparticles-size, shape, uniformity, crystal structure, composition, surface chemistry, and dispersibility-in addition to interfaces, asymmetry, and spatial organization, which facilitate communication among the constituent materials and enable their synergistic functions. While it is challenging to control all of these nanoscale features simultaneously, nanoparticle cation exchange reactions offer powerful capabilities that overcome many of the synthetic bottlenecks. In these reactions, which are often carried out on metal chalcogenide materials such as roxbyite copper sulfide (CuS) that have high cation mobilities and a high density of vacancies, cations from solution replace cations in the nanoparticle. Replacing only a fraction of the cations can produce phase-segregated products having internal interfaces, i.e., heterostructured nanoparticles. By the use of multiple partial cation exchange reactions, multicomponent heterostructured nanoparticles can be synthesized.In this Account, we discuss the use of multiple sequential partial cation exchange reactions to rationally construct complex heterostructured nanoparticles toward the goal of made-to-order synthesis. Sequential partial exchange of the Cu cations in roxbyite CuS spheres, rods, and plates produces a library of 47 derivatives that maintain the size, shape, and uniformity defined by the roxbyite templates while introducing various types of interfaces and different materials into the resulting heterostructured nanoparticles. When an excess of the metal salt reagent is used, the reaction time controls the extent of partial cation exchange. When a substoichiometric amount of metal salt reagent is used instead, the extent of partial cation exchange can be precisely controlled by the cation concentration. This approach allows significant control over the number, order, and location of partial cation exchange reactions. Up to seven sequential partial cation exchange reactions can be applied to roxbyite CuS nanorods to produce derivative heterostructured nanorods containing as many as six different materials, eight internal interfaces, and 11 segments, i.e. ZnS-CuInS-CuGaS-CoS-[CdS-(ZnS-CuInS)]-CuS. We considered all possible injection sequences of five cations (Zn, Cd, Co, In, Ga) applied to all accessible CuS-derived nanorod precursors along with simple design criteria based on preferred cation exchange locations and crystal structure relationships. Using these guidelines, we mapped out synthetically feasible pathways to 65 520 distinct heterostructured nanorods, experimentally observed 113 members of this heterostructured nanorod megalibrary, and then made three of these in high yield and in isolatable quantities. By expansion of these capabilities into a broader scope of materials and identification of additional design guidelines, it should be possible to move beyond model systems and access functional targets rationally and retrosynthetically. Overall, the ability to access large libraries of complex heterostructured nanoparticles in a made-to-order manner is an important step toward bridging the gap between design and synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.0c00520DOI Listing

Publication Analysis

Top Keywords

cation exchange
32
heterostructured nanoparticles
28
partial cation
24
exchange reactions
20
sequential partial
12
heterostructured
10
cation
10
exchange
9
nanoparticles
8
nanoparticles multiple
8

Similar Publications

We report that the cationic iridium complex (PCP)IrH catalyzes the transfer-dehydrogenation of alkanes to give alkenes and hydrogen isotope exchange (HIE) of alkanes and arenes. Contrary to established selectivity trends found for C-H activation by transition metal complexes, strained cycloalkanes, including cyclopentane, cycloheptane, and cyclooctane, undergo C-H addition much more readily than -alkanes, which in turn are much more reactive than cyclohexane. Aromatic C-H bonds also undergo H/D exchange much less rapidly than those of the strained cycloalkanes, but much more favorably than cyclohexane.

View Article and Find Full Text PDF

Magnetic biochar (MBC), as an environmentally friendly material, has been extensively used for the remediation of soil and groundwater contamination. The retention and release of nanoplastics (NPs) with carboxyl (NPs-COOH) or amino functionalization (NPs- NH) in saturated porous media were investigated under varying conditions of ionic strength (IS), MBC addition, humic acid (HA) concentration, and cation types. The reversible and irreversible retention of NPs was examined by altering the IS, increasing the solution pH, and inducing cation exchange.

View Article and Find Full Text PDF

Pollution of soil by heavy metals has become a critical environmental issue. This study investigated an innovative approach to heavy metals removal, focusing on the desorption of nickel and zinc from vermiculite using a combination of leaching and ultrasonic (US) irradiation at 20 or 362 kHz. When 0.

View Article and Find Full Text PDF

Fertilization and intercropping reduce Pb accumulation in plants by influencing rhizosphere soil phosphorus forms in soil-plant systems.

Ecotoxicol Environ Saf

March 2025

Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China; Yunnan Field Scientific Station for Restoration of Ecological Function in Central Yunnan of China, Kunming, Yunnan 650091, China. Electronic address:

Fertilization and planting practices in crop systems have become important ways to reduce the uptake of heavy metals in polluted soils. However, the relative effectiveness of different management modes and the underlying mechanisms are not fully understood. In this study, we conducted experiments to assess how fertilization and planting modes affect the bioavailability of lead (Pb) in soil and its accumulation in plants.

View Article and Find Full Text PDF

Study on the quality characteristics of jujube slices under different pretreatment and drying methods.

Ultrason Sonochem

March 2025

College of Food Science & Biology, Hebei University of Science & Technology, Shijiazhuang 050018, China; Hebei Provincial Functional Food Technology Innovation Center, Shijiazhuang 050018, China. Electronic address:

This study investigates the effects of different pretreatment methods, cold plasma (CP) and ultrasound (US), as well as different drying techniques, including vacuum freeze-drying (FD), hot air drying (HAD), and microwave coupled with pulsed vacuum drying (MPVD), on the quality characteristics of winter jujube slices. The physical, chemical, and functional properties were analyzed, encompassing farinograph attributes, particle size, cation exchange capacity, total phenolic and flavonoid content, and flavor compounds were analyzed. In terms of physical properties, jujube slices subjected to MPVD demonstrate superior water-holding capacity at 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!