Dynamic materials comprising spiropyrans have emerged as one of the most interesting and promising class of stimulus-responsive materials. Spiropyrans are often embedded in polymer matrices; their covalent attachment into porous monolithic silsesquioxane frameworks, however, is virtually unexplored. We demonstrate that a silylated spiropyran derivative can be covalently incorporated into ultralight silsesquioxane-based bulk materials by a two-step co-condensation sol-gel approach without restricting its conformational freedom and thus its stimulus-responsive properties. UV-vis measurements prove the conversion of the colorless closed-ring form of the spiropyran molecule into its highly colored purple isomer or the yellow colored protonated structure thereof. The transformation can be triggered simply by irradiation of the spiropyran-containing silsesquioxane monolith with UV or visible light or by the pH value of the chemical environment. A strong dependence of the surface polarity and water wettability on the prevalent isomer was observed. The contact angle of a water droplet on the monolithic surface can be altered from 146 to 100° by irradiation of the monolith with UV light for 3 min. Additionally, the prepared materials possess high specific surface areas, low bulk densities, and porosities of up to 84%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7586299 | PMC |
http://dx.doi.org/10.1021/acsami.0c14987 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!