In vivo administration of the porphyrogenic agent allylisopropylacetamide (AIA) to phenobarbital-pretreated rats results in marked loss of hepatic cytochrome P-450 content. Using isozyme-selective functional markers, we now show that such loss reflects inactivation of several phenobarbital-inducible and constitutive isozymes. Some of the isozymes (P-450a,b,h and PB-1) are largely reparable by reconstitution with exogenous hemin, indicating that after AIA-mediated loss of their prosthetic heme, their apoprotein moieties are essentially intact and functionally reconstitutable with hemin. On the other hand, after AIA-mediated inactivation, isozymes such as cytochrome P-450p remain refractory to such repair. The cause for such intractability remains somewhat elusive since AIA-mediated alkylation of the apocytochrome, proteolytic loss of the hemoprotein, or even irreversible binding of prosthetic heme catabolites to the apocytochrome does not appear to be responsible.

Download full-text PDF

Source

Publication Analysis

Top Keywords

hepatic cytochrome
8
cytochrome p-450
8
prosthetic heme
8
inactivation multiple
4
multiple hepatic
4
isozymes
4
p-450 isozymes
4
isozymes rats
4
rats allylisopropylacetamide
4
allylisopropylacetamide mechanistic
4

Similar Publications

Naturally occurring vitamin E is a lipophilic plant-derived molecule corresponding to the 2R forms of alpha-tocopherol. A series of natural analogs or tocochromanols are present in nature, including β-, γ- and δ-tocopherol (βT, γT, δT), the corresponding tocotrienols (αTE, βTE, γTE, δTE) and tocomonoenols. Differences between these analogs as lipophilic antioxidants and modulators of molecular processes suggest specific therapeutic properties against various disorders associated with acute and chronic inflammation.

View Article and Find Full Text PDF

Gliclazide is a sulfonylurea hypoglycemic agent used to treat type 2 diabetes. Cytochrome P450 (CYP) 2C9 and CYP2C19 are primarily involved in the hepatic metabolism of gliclazide. The two CYP isozymes are highly polymorphic, and their genetic polymorphisms are known to significantly impact the pharmacokinetics of gliclazide.

View Article and Find Full Text PDF

Burn-induced mitochondrial dysfunction in hepatocytes: The role of methylation-controlled J protein silencing.

J Trauma Acute Care Surg

January 2025

From the Division of Gastrointestinal, Trauma, and Endocrine Surgery, Department of Surgery (A.P., K.M.M., A.C.Q., E.J.K., J.-P.I.), Division of Burn Research (E.J.K.), and Division of Alcohol Research (E.J.K.), Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado.

Background: Burn injuries trigger a systemic hyperinflammatory response, leading to multiple organ dysfunction, including significant hepatic damage. The liver plays a crucial role in regulating immune responses and metabolism after burn injuries, making it critical to develop strategies to mitigate hepatic impairment. This study investigates the role of methylation-controlled J protein (MCJ), an inner mitochondrial protein that represses complex I in burn-induced oxidative stress and mitochondrial dysfunction, using an in vitro Alpha Mouse Liver 12 cell model.

View Article and Find Full Text PDF

A gut microbiota-independent mechanism shapes the bile acid pool in mice with MASH.

JHEP Rep

November 2024

Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium.

Article Synopsis
  • The study investigates how changes in bile acids contribute to metabolic dysfunction-associated steatohepatitis (MASH), focusing on the role of gut bacteria.
  • Mice with MASH on a high-fat diet were compared to their wildtype counterparts to isolate the effects of MASH from diet and environmental factors.
  • Findings show that MASH alters bile acid levels through mechanisms unrelated to gut microbiota, particularly highlighting increased enzyme activity in the liver that reduces secondary bile acid levels.
View Article and Find Full Text PDF

(1) Background and aim: Aloe arborescens Mill. (A. arborescens) is one of the most widely distributed species in the genus Aloe and has garnered widespread recognition for its anticancer properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!