Males and females differ in various abilities. However, sex differences in hemispheric lateralization of attentional processing are still not well-understood. Using a lateralized version of the attentional network test that combines the Posner cueing paradigm and visual field methodology, we aimed to examine sex differences in the lateralization of several attentional processes including alerting, executive control, orienting benefit, reorienting, and orienting cost. Fifty-six females and 59 males participated in this study. We found a left visual field (right hemisphere) advantage for alerting defined by the differences between no-cue and center-cue conditions in the male group, but it was mainly attributed to the left visual field advantage in the no-cue condition. In contrast, the female group exhibited a left visual field advantage in the center-cue condition. Both groups showed preferences to the left visual field for reorienting and orienting cost, but females exhibited larger effects. This indicates that the two sexes exhibit similarities in terms of the lateralization of these two attentional processes. Furthermore, the interactions between executive control and reorienting/orienting cost were more efficient in males than in females. The current study highlights sex differences in the hemispheric lateralization of attentional networks and possible underlying neural substrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00426-020-01423-z | DOI Listing |
J Vasc Surg Venous Lymphat Disord
January 2025
The RANE Center for Venous & Lymphatic Diseases, St. Dominic Hospital, Jackson, MS. Electronic address:
Objectives: Phlebolymphedema, the most common cause of secondary lymphedema in Western societies, seldom gets the attention it deserves. Diagnosis is often missed and when evaluated is through lymphoscintigraphy (LSG) which is cumbersome. This study aims to assess the role of computed tomography (CT) scanning in the diagnosis of phlebolymphedema of the lower extremities by comparing CT characteristics to the International Society of Lymphology (ISL) grading system and LSG.
View Article and Find Full Text PDFCortex
December 2024
Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, Ontario, Canada.
It has been demonstrated that humans exhibit an attention bias towards the lower visual field (e.g., faster target detection for targets appearing below eye level).
View Article and Find Full Text PDFJ Knee Surg
January 2025
Lenox Hill Hospital Department of Orthopedic Surgery, Northwell Health, New York, United States.
Patellar instability following total knee arthroplasty (TKA) is a rare, yet serious complication, potentially requiring revision surgery or resulting in chronic dysfunction. When encountered, it is paramount to understand the etiologies, diagnostic approaches, treatment options, and outcomes of the selected treatment. The most common cause of patella instability is improper positioning of components, leading to lateral maltracking of the patella.
View Article and Find Full Text PDFEur Heart J Case Rep
January 2025
Department of Cardiovascular Medicine, Sendai Kousei Hospital, 1-20 Tsutsumidori-amamiya, Aoba Ward, Sendai, Miyagi 9810914, Japan.
Background: Transcatheter edge-to-edge mitral valve repair (M-TEER) using the MitraClip system is primarily performed using the transfemoral approach. However, when this approach is not feasible, the transjugular approach can be used as an alternative.
Case Summary: A 57-year-old man presented with heart failure and persistent New York Heart Association class IV symptoms, refractory to guideline-directed medical therapy, intravenous therapy, and intra-aortic balloon pumping.
Sci Rep
January 2025
Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.
Two-Dimensional transition metal dichalcogenides have been the subject of extensive attention thanks to their unique properties and atomically thin structure. Because of its unprecedented room-temperature magnetic properties, iron-doped MoS (Fe:MoS) is considered the next-generation quantum and magnetic material. It is essential to understand Fe:MoS's thermal behavior since temperature and thermal load/activation are crucial for their magnetic properties and the current nano and quantum devices have been severely limited by thermal management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!