AI Article Synopsis

  • A new method for producing polymeric hollow microfibers using gas dissolution foaming allows for diverse porosity in polycaprolactone (PCL) fibers, overcoming previous limitations.
  • This technique successfully creates two types of hollow fibers: one with smooth surfaces and another with increased surface porosity, both derived from solid PCL microfibers made through electrospinning.
  • Initial tests suggest these foamed hollow fibers are effective for drug delivery, as they can hold up to 15% ibuprofen and release it steadily over 1.5 days, compared to solid fibers that release the drug in just seven hours.

Article Abstract

A new and straightforward route to produce polymeric hollow microfibers has been proposed. Polycaprolactone (PCL) hollow fibers are obtained for the first time using an environmentally friendly gas dissolution foaming approach, overcoming its limitations to induce porosity on samples in the micrometric range. Different porous morphologies are achieved from solid PCL microfibers with a well-controlled diameter obtained by conventional electrospinning. The optimization of the foaming parameters provides two sets of well-defined hollow fibers, one showing smooth surfaces and the other presenting an enhanced surface porosity. Accordingly, gas dissolution foaming proves to be not only suitable for the production of hollow polymeric microfibers, but is also capable of providing diverse porous morphologies from the same precursor, solid fibers. Moreover, a preliminary study about the suitability of this new generation of foamed hollow polymeric fibers for drug delivery is carried out, aiming to take advantage of the enhanced surface area and tunable morphology obtained by using the proposed new production method. It is found that the foamed microfibers can be loaded with up to 15 wt% of ibuprofen while preserving the morphology of each kind of fiber. Then, foamed PCL fibers presenting a hollow structure and surface porosity show a remarkable constant release of ibuprofen for almost one and a half days. In contrast, the original solid fibers do not present such behavior, releasing all the ibuprofen in about seven hours.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0tb01560aDOI Listing

Publication Analysis

Top Keywords

hollow polymeric
12
gas dissolution
12
dissolution foaming
12
polymeric microfibers
8
hollow fibers
8
porous morphologies
8
enhanced surface
8
surface porosity
8
solid fibers
8
hollow
6

Similar Publications

Carbon-supported Pt-based catalysts are the most effective catalysts for direct methanol fuel cells (DMFCs). However, challenges such as high Pt loading, cost, and susceptibility to CO poisoning severely hinder the development of DMFCs. In this paper, CoFeO@polymer@ZIF-67 is prepared successfully through sequential solution polymerization and in situ growth with modified CoFeO as the core.

View Article and Find Full Text PDF

Carbon Dots-Modified Hollow Mesoporous Photonic Crystal Materials for Sensitivity- and Selectivity-Enhanced Sensing of Chloroform Vapor.

Nanomicro Lett

December 2024

Department of Chemistry and Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, People's Republic of China.

Chloroform and other volatile organic pollutants have garnered widespread attention from the public and researchers, because of their potential harm to the respiratory system, nervous system, skin, and eyes. However, research on chloroform vapor sensing is still in its early stages, primarily due to the lack of specific recognition motif. Here we report a mesoporous photonic crystal sensor incorporating carbon dots-based nanoreceptor (HMSS@CDs-PCs) for enhanced chloroform sensing.

View Article and Find Full Text PDF

Objectives: The study aimed to evaluate the efficacy and safety of hollow pedicle screw-anchored bone cement combined with posterior long-segment fixation (LSF) for the treatment of Stage III Kümmell's disease.

Patients And Methods: The study retrospectively analyzed 23 patients (18 females, 5 males; mean age: 70.1±6.

View Article and Find Full Text PDF

Pt-modified hollow tube-like polyaniline-based NH sensor.

J Hazard Mater

November 2024

College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China. Electronic address:

Polyaniline (PANI) has significant applications in room-temperature NH detection due to its unique and reversible doping-dedoping chemical state, stable electrical conductivity and easy and convenient synthesis process. However, pristine PANI still suffers from poor performance in terms of sensitivity, response speed and detection limit. To address issues of low sensitivity and high detection limit, a platinum (Pt)-modified hollow PANI (Pt-PANI) sensor was designed.

View Article and Find Full Text PDF

Flexural Behavior of Innovative Glass Fiber-Reinforced Composite Beams Reinforced with Gypsum-Based Composites.

Polymers (Basel)

November 2024

Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212000, China.

Glass Fiber-Reinforced Composite (GFRP) has found widespread use in engineering structures due to its lightweight construction, high strength, and design flexibility. However, pure GFRP beams exhibit weaknesses in terms of stiffness, stability, and local compressive strength, which compromise their bending properties. In addressing these limitations, this study introduces innovative square GFRP beams infused with gypsum-based composites (GBIGCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!