One-dimensional CdS@CdZnS@ZnS-Ni(OH) nano-hybrids with epitaxial heterointerfaces and spatially separated photo-redox sites enabling highly-efficient visible-light-driven H evolution.

Nanoscale

Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.

Published: October 2020

Photocatalytic solar-to-fuel conversion has been of great interest in recent years. Nevertheless, the rational structural manipulation of photocatalysts toward an efficient H2 evolution reaction (HER) is still under-developed. In this work, by employing CdS nanowires as the growth substrate, unique one-dimensional (1D) CdS@Cd0.5Zn0.5S@ZnS-Ni(OH)2 heterostructures were first synthesized through the ultrasonic water-bath reaction combined with subsequent hydrothermal and in situ photo-deposition processes. Under the optimized conditions, CS@30CZ0.5S@40ZS-3N with 30 wt% Cd0.5Zn0.5S, 40 wt% ZnS, and 3 wt% Ni(OH)2 achieves a visible-light-driven HER activity as high as 86.79 mmol h-1 g-1 (corresponding to an apparent quantum yield of 22.8% at 420 nm), which is 4 and 119 times higher than that of Pt-decorated CS@30CZ0.5S@40ZS and CdS, respectively. In addition, CdS@Cd0.5Zn0.5S@ZnS-Ni(OH)2 is also endowed with a good stability for H2 production under long-term irradiation. The spatial separation of photo-redox sites and epitaxial heterointerfaces in CdS@Cd0.5Zn0.5S@ZnS-Ni(OH)2 nanowires facilitate the charge transfer and separation effectively, accounting well for their superior photocatalytic capability. The results indicated in this work could benefit the exploitation of high-performance nanostructures for promising photocatalytic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0nr04007jDOI Listing

Publication Analysis

Top Keywords

epitaxial heterointerfaces
8
photo-redox sites
8
one-dimensional cds@cdzns@zns-nioh
4
cds@cdzns@zns-nioh nano-hybrids
4
nano-hybrids epitaxial
4
heterointerfaces spatially
4
spatially separated
4
separated photo-redox
4
sites enabling
4
enabling highly-efficient
4

Similar Publications

Interfacial charge transfer and its impact on transport properties of LaNiO/LaFeO superlattices.

Sci Adv

December 2024

Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.

Charge transfer or redistribution at oxide heterointerfaces is a critical phenomenon, often leading to remarkable properties such as two-dimensional electron gas and interfacial ferromagnetism. Despite studies on LaNiO/LaFeO superlattices and heterostructures, the direction and magnitude of the charge transfer remain debated, with some suggesting no charge transfer due to the high stability of Fe (3d). Here, we synthesized a series of epitaxial LaNiO/LaFeO superlattices and demonstrated partial (up to ~0.

View Article and Find Full Text PDF

Improving the catalyst performance for the thermal oxidation reaction faces the daunting challenge of the activity-stability trade-off. Herein, an evolved heterointerface was constructed on spherical MnO nanocatalysts to achieve exceptional stability while maintaining adequate activity by simply introducing La. The generation of the active MnO-MnO heterointerfaces by La doping was experimentally observed, which further segregates to the surface during thermal aging and forms epitaxially grown heterostructured LaMnO-MnO with Mn atoms.

View Article and Find Full Text PDF

Effect of film thickness on phase structure of epitaxial non-doped hafnium oxide films.

Micron

December 2024

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China. Electronic address:

Article Synopsis
  • - HfO (hafnium oxide) is a promising dielectric material in electronics, noted for its ferroelectric properties since 2011, with research focusing on stabilizing its polar o-phase structure.
  • - The study involved growing non-doped HfO thin films on SrTiO substrates using pulsed laser deposition (PLD), revealing that as film thickness increases, surface roughness also increases.
  • - Analysis techniques like atomic force microscopy and X-ray photoelectron spectroscopy confirmed the films' purity and structural quality, while electron microscopy studies showed the HfO/SrTiO interface is atomically abrupt and incoherent.
View Article and Find Full Text PDF

Creating a heterostructure by combining two magnetically and structurally distinct ruthenium oxides is a crucial approach for investigating their emergent magnetic states and interactions. Previously, research has predominantly concentrated on the intrinsic properties of the ferromagnet SrRuO and recently discovered altermagnet RuO solely. Here, the study engineers an ultrasharp sublattice-matched heterointerface using pseudo-cubic SrRuO and rutile RuO, conducting an in-depth analysis of their spin interactions.

View Article and Find Full Text PDF
Article Synopsis
  • The article discusses the challenges of creating mixed-dimensional van der Waals heterostructures using chemical vapor deposition (CVD) due to complex growth mechanisms.
  • Researchers successfully synthesized BiS/WS heterostructures through a two-step CVD method, which showed strong epitaxial growth and a preferred orientation at the 1D/2D interface.
  • Characterization revealed that BiS nanowires grew along the zigzag edges of WS monolayers, leading to enhanced charge transfer and significantly improved light harvesting capabilities, achieving high responsivity and detectivity values.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!