AI Article Synopsis

  • Overexposure to UV radiation can cause oxidative stress and skin damage, but natural antioxidants like red propolis extracts may help prevent these injuries.
  • The study developed topical nanoemulgels with Brazilian red propolis (BRP) to improve skin protection against UVA/UVB radiation, addressing the issue of low solubility in traditional formulations.
  • Results showed that the nanoemulgel with DOTAP had higher BZP retention and better protective effects against oxidative damage, making it a promising option for skin protection.

Article Abstract

The overexposure of the skin to ultraviolet (UV) radiation may lead to oxidative stress, resulting in severe damage. The prevention of skin injuries through the topical application of natural compounds rich in antioxidants, such as propolis extracts, has shown promising results. In Brazil, the "red propolis" extract has stood out due to its complex constitution, based mainly on polyprenylated benzophenones (BZP). However, although the use of red propolis extracts has been shown to be encouraging, their addition in topical formulations is limited by the low solubility of BZP. For this reason, this study aimed to develop topical nanoemulgels containing Brazilian red propolis (BRP) extract to increase the potential of topical application, and the evaluation of skin protection against UVA/UVB radiation damage by means of protein carbonylation, protein thiol content and TBARS assays. The nanoemulgels were obtained by adding gelling polymer to nanoemulsions that were previously prepared by spontaneous emulsification. In this sense, a nanoemulgel containing BRP extract-loaded nanoemulsions (H-NE) and a nanoemulgel containing BRP extract-loaded nanoemulsions with DOTAP (H-NE/DT) were prepared. The physicochemical characterization of nanoemulgels showed monodisperse populations of 200-300 nm. The H-NE zeta potential was -38 mV, while that of H-NE/DT was +36 mV. BZP content in the formulations was around 0.86 mg g-1. These parameters remained stable for 90 days under cold storage. H/NE and H-NE/DT presented a non-Newtonian pseudoplastic rheological behavior. Permeation/retention studies, through porcine ear skin, showed the highest BZP retention (18.11 μg cm-2 after 8 h) for H-NE/DT, which also demonstrated, in an in vitro study, the highest ability to protect skin against oxidative damage after UVA/UVB radiation exposure. The results concerning the antioxidant activity revealed that formulations containing the BRP n-hexane extract were the most promising in combating oxidative stress, probable due to the presence of polyprenylated BZP. Altogether, the outcomes of this study suggest that nanoemulgels have suitable characteristics for topical application, and may be an alternative for the prevention of oxidative skin damage caused by UVA/UVB radiation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0pp00243gDOI Listing

Publication Analysis

Top Keywords

red propolis
12
topical application
12
uva/uvb radiation
12
topical nanoemulgels
8
nanoemulgels brazilian
8
brazilian red
8
skin damage
8
oxidative stress
8
propolis extracts
8
nanoemulgel brp
8

Similar Publications

Propolis is a valuable natural resource for extracting various beneficial compounds. This study explores a sustainable extraction approach for Brazilian green propolis. First, supercritical fluid extraction (SFE) process parameters were optimized (co-solvent: 21.

View Article and Find Full Text PDF

Background: Propolis is a natural substance produced by honeybees that has various biological properties including, anti-inflammatory, antioxidant and antimicrobial properties. Although previous studies have evaluated the antimicrobial effects of propolis in dentistry, its effects on dental pulp stem cell (DPSC) viability, migration, and differentiation are yet not well understood. The objective of this study was to investigate the effects of Chinese propolis on viability/proliferation, migration, differentiation and cytokine expression in DPSCs.

View Article and Find Full Text PDF

Bioactive metabolites of Brazilian Red Propolis: Cytotoxic, antimalarial, and antimicrobial properties.

Fitoterapia

December 2024

National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38655, USA; Department of Biomolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA. Electronic address:

Brazilian Red Propolis (BRP) is a natural product known for its rich chemical composition and therapeutic potential. This study investigates the phytochemical profile and evaluates the cytotoxic, antiplasmodial, and antimicrobial properties of red propolis extract and its isolated compounds vestitol (1), neovestitol (2), medicarpin (3), 7-O-methylvestitol (4), and oblongifolin B (5). The extract showed selective cytotoxicity against cancer cell lines (IC: 16-39 μg/mL).

View Article and Find Full Text PDF

Evaluation of the antitrypanosomal activity, cytotoxicity and phytochemistry of red Brazilian propolis.

PLoS One

November 2024

Research and Laboratories Sector, National Drug and Cosmetic Control Laboratories (NDCCL), Saudi Food and Drug Authority, Riyadh, Saudi Arabia.

Recently, the growth in the consumption of functional foods with potential nutritional and health benefits revealed rapid progress in phytochemical analysis to assure quality and profile the chemical composition. Bee propolis, a gummy exudate produced in beehives after harvesting from different plant species and showed to contain bioactive secondary metabolites with biological importance. The main goal of the current study is to profile the chemical composition of red propolis samples from the Brazilian stingless bee Tetragonula biroi for the first time using HPLC-UV-ELSD and NMR analysis for assignment of the abundant metabolites' classes as well as extraction and isolation of the major compounds.

View Article and Find Full Text PDF

Infectious diseases remain as a significant cause of thousands of deaths annually worldwide. Therefore, this study aimed to investigate the antimicrobial and antiparasitic activity of the crude hydroalcoholic extract and compounds isolated from Brazilian Red Propolis (BRP) against oral pathogens and Toxoplasma gondii, using in vitro, in vivo and in silico approaches. Antimicrobial and synergistic activities were determined using the broth dilution method and the checkerboard assay, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!