Background: Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure syndrome characterized by anemia, short stature, congenital anomalies, and cancer predisposition. Most cases are due to mutations in genes encoding ribosomal proteins (RP) leading to RP haploinsufficiency. Effective treatments for the anemia of DBA include chronic red cell transfusions, long-term corticosteroid therapy, or hematopoietic stem cell transplantation. In a small patient series and in animal models, there have been hematologic responses to L-leucine with amelioration of anemia. The study objectives of this clinical trial were to determine feasibility, safety, and efficacy of L-leucine in transfusion-dependent patients with DBA.
Procedure: Patients ≥2 years of age received L-leucine 700 mg/m orally three times daily for nine months to determine a hematologic response and any improvement in growth (NCT01362595).
Results: This multicenter, phase I/II study enrolled 55 subjects; 43 were evaluable. There were 21 males; the median age at enrollment was 10.4 years (range, 2.5-46.1 years). No significant adverse events were attributable to L-leucine. Two subjects had a complete erythroid response and five had a partial response. Nine of 25, and 11 of 25, subjects experienced a positive weight and height percentile change, respectively, at the end of therapy.
Conclusions: L-leucine is safe, resulted in an erythroid response in 16% of subjects with DBA, and led to an increase in weight and linear growth velocity in 36% and 44% of evaluable subjects, respectively. Further studies will be critical to understand the role of L-leucine in the management of patients with DBA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8273758 | PMC |
http://dx.doi.org/10.1002/pbc.28748 | DOI Listing |
Am J Med Genet A
December 2024
Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Diamond Blackfan anemia (DBA) is an autosomal dominant disorder with a heterogeneous clinical presentation which may include macrocytic anemia typically presenting in the first year of life, growth retardation, and congenital malformations in 30%-50% of patients. This phenotypic variability is partially explained by genotype-phenotype correlations, with several ribosomal protein genes implicated in this disorder. Most cases are due to de novo variants, but familial occurrences highlight variable expressivity and reduced penetrance.
View Article and Find Full Text PDFOrphanet J Rare Dis
December 2024
Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
Diamond-Blackfan anemia (DBA) is a rare constitutional inherited bone marrow failure syndrome (iBMF) characterized by progressive severe non-regenerative anemia and congenital abnormalities. Diagnosis is made by identification of a DBA-causing variant, typically in a ribosomal protein gene. More than 99% of patients are diagnosed in the pediatric age, but clinical manifestation may be mild and severe anemia can occur later in the patient's life.
View Article and Find Full Text PDFEJHaem
December 2024
Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics National Cancer Institute, NIH, Rockville Bethesda Maryland USA.
Introduction: Diamond Blackfan anaemia (DBA) is a rare disorder characterized by failure of red blood cell production, congenital abnormalities and cancer predisposition, primarily caused by pathogenic germline variants in genes encoding ribosomal proteins.
Methods: We conducted a genotype-phenotype and outcome study of 121 patients with DBA spanning the 20-year history of the National Cancer Institute's Inherited Bone Marrow Failure Syndromes study. Patient phenotypes were compared by large versus small ribosomal protein genes, across genes with >5 cases (, , and ) and by type of pathogenic variants (hypomorphic versus null, large deletions versus others).
Mol Ther
December 2024
Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA. Electronic address:
Diamond-Blackfan anemia syndrome (DBAS) is an inherited bone marrow failure disorder caused by haploinsufficiency of ribosomal protein genes, most commonly RPS19. Limited access to patient hematopoietic stem/progenitor cells (HSPCs) is a major roadblock to developing novel therapies for DBAS. We developed a novel self-inactivating third-generation RPS19-encoding lentiviral vector (LV), termed "SJEFS-S19", for DBAS gene therapy.
View Article and Find Full Text PDFSignal Transduct Target Ther
December 2024
The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!