Ensemble coding of color and luminance contrast.

Atten Percept Psychophys

Department of Psychology, University of Nevada, Reno, NV, USA.

Published: April 2021

Ensemble coding has been demonstrated for many attributes including color, but the metrics on which this coding is based remain uncertain. We examined ensemble percepts for stimulus sets that varied in chromatic contrast between complementary hues, or that varied in luminance contrast between increments and decrements, in both cases focusing on the ensemble percepts for the neutral gray stimulus defining the category boundary. Each ensemble was composed of 16 circles with four contrast levels. Observers saw the display for 0.5 s and then judged whether a target contrast was a member of the set. False alarms were high for intermediate contrasts (within the range of the ensemble) and fell for higher or lower values. However, for ensembles with complementary hues, gray was less likely to be reported as a member, even when it represented the mean chromaticity of the set. When the settings were repeated for luminance contrast, false alarms for gray were higher and fell off more gradually for out-of-range contrasts. This difference implies that opposite luminance polarities represent a more continuous perceptual dimension than opponent-color variations, and that "gray" is a stronger category boundary for chromatic than luminance contrasts. For color, our results suggest that ensemble percepts reflect pooling within rather than between large hue differences, perhaps because the visual system represents hue differences more like qualitatively different categories than like quantitative differences within an underlying color "space." The differences for luminance and color suggest more generally that ensemble coding for different visual attributes might depend on different processes that in turn depend on the format of the visual representation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8021599PMC
http://dx.doi.org/10.3758/s13414-020-02136-6DOI Listing

Publication Analysis

Top Keywords

ensemble coding
12
luminance contrast
12
ensemble percepts
12
ensemble
8
complementary hues
8
category boundary
8
false alarms
8
hue differences
8
luminance
6
contrast
6

Similar Publications

Importance: Recently, the US Food and Drug Administration gave premarketing approval to an algorithm based on its purported ability to identify individuals at genetic risk for opioid use disorder (OUD). However, the clinical utility of the candidate genetic variants included in the algorithm has not been independently demonstrated.

Objective: To assess the utility of 15 genetic variants from an algorithm intended to predict OUD risk.

View Article and Find Full Text PDF

LncSL: A Novel Stacked Ensemble Computing Tool for Subcellular Localization of lncRNA by Amino Acid-Enhanced Features and Two-Stage Automated Selection Strategy.

Int J Mol Sci

December 2024

School of Computer Science and Artificial Intelligence Aliyun School of Big Data School of Software, Changzhou University, Changzhou 213164, China.

Long non-coding RNA (lncRNA) is a non-coding RNA longer than 200 nucleotides, crucial for functions like cell cycle regulation and gene transcription. Accurate localization prediction from sequence information is vital for understanding lncRNA's biological roles. Computational methods offer an effective alternative to traditional experimental methods for annotating lncRNA subcellular positions.

View Article and Find Full Text PDF

Rate-Compatible, Bandwidth-Efficient, Low-Density Parity-Check (LDPC) Codes for Aeronautical Telemetry.

Entropy (Basel)

November 2024

Department of Electrical Engineering & Computer Science, University of Kansas, Lawrence, KS 66045, USA.

Low-density parity-check (LDPC) codes form part of the IRIG-106 standard and have been successfully deployed for the Telemetry Group version of shaped-offset quadrature phase shift keying (SOQPSK-TG) modulation. Recently, LDPC code solutions have been proposed and optimized for continuous phase modulations (CPMs), including pulse code modulation/frequency modulation (PCM/FM) and the multi-h CPM developed by the Advanced-Range TeleMetry program (ARTM CPM), the latter of which was shown to perform around one dB from channel capacity. In this paper, we consider the effect of the random puncturing and shortening of these LDPC codes to further improve spectrum efficiency.

View Article and Find Full Text PDF

Recurrent activity propagates through labile ensembles in macaque dorsolateral prefrontal microcircuits.

Curr Biol

December 2024

Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA; Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Electronic address:

Human and non-human primate studies clearly implicate the dorsolateral prefrontal cortex (dlPFC) as critical for advanced cognitive functions. It is thought that intracortical synaptic architectures within the dlPFC are the integral neurobiological substrate that gives rise to these processes. In the prevailing model, each cortical column makes up one fundamental processing unit composed of dense intrinsic connectivity, conceptualized as the "canonical" cortical microcircuit.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are strongly associated with cellular physiological mechanisms and implicated in the numerous diseases. By exploring the subcellular localizations of lncRNAs, we can not only gain crucial insights into the molecular mechanisms of lncRNA-related biological processes but also make valuable contributions towards the diagnosis, prevention, and treatment of various human diseases. However, conventional experimental techniques tend to be laborious and time-intensive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!