Genotypic diversity in multi-drug-resistant E. coli isolated from animal feces and Yamuna River water, India, using rep-PCR fingerprinting.

Environ Monit Assess

Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India.

Published: October 2020

Genotypic diversity among multi-drug-resistant (MDR) aquatic E. coli isolated from different sites of Yamuna River was analyzed using repetitive element PCR (rep-PCR) methods viz. ERIC-PCR and (GTG)-PCR and compared with the MDR animal fecal isolates. The 97 E. coli isolates belonging to different serotypes, phylogroups, and multi-drug resistance patterns were analyzed. High genetic diversity was observed by both the methods; however, (GTG) typing showed higher discriminating potential. Combination of ERIC types (E1-E32) and (GTG) types (G1-G46) generated 77 genotypes. The frequency of genotypes ranged from 0.013 to 0.065. The genotype composition of E. coli isolates was highly diverse at all the sampling sites across Yamuna River except at its entry site in Delhi. The sampling sites under the influence of high anthropogenic activities showed an increase in number of unique genotype isolates. These sites also exhibited high multiple antibiotic resistance (MAR) indexes (above 0.25) suggesting high risk of contamination. Principal coordinate analysis (PCoA) showed limited clustering of genotypes based on the sampling sites. The most frequent genotypes were grouped in the positive zone of both the principal coordinates (PC1 and PC2). The genotypes of most of the animal fecal isolates were unique and occupied a common space in the negative PC1 area forming a separate cluster. High genotypic diversity among the aquatic E. coli and the drain isolates, discharging the untreated municipal waste in the river, was observed, suggesting that the sewage effluents contribute substantially to contamination of this river system than animal feces. The presence of such a high diversity among the MDR E. coli isolates in the natural river systems is of great public health significance and highlights the need of an efficient surveillance system for better management of Indian natural water bodies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-020-08635-1DOI Listing

Publication Analysis

Top Keywords

genotypic diversity
12
yamuna river
12
coli isolates
12
sampling sites
12
diversity multi-drug-resistant
8
coli isolated
8
animal feces
8
aquatic coli
8
sites yamuna
8
animal fecal
8

Similar Publications

Background: The endangered Kashmir musk deer (Moschus cupreus), native to high-altitude Himalayas, is an ecological significant and endangered ungulate, threatened by habitat loss and poaching for musk pod distributed in western Himalayan ranges of India, Nepal and Afghanistan. Despite its critical conservation status and ecological importance in regulating vegetation dynamics, knowledge gaps persist regarding its population structure and genetic diversity, hindering effective management strategies.

Methods And Results: We aimed to understand the population genetics of Kashmir musk deer in north-western Himalayas using two mitochondrial DNA (mtDNA) regions and 11 microsatellite loci.

View Article and Find Full Text PDF

A wealth of research focused on African American populations has connected rs2814778-CC ("Duffy-null") to decreased neutrophil (neutropenia) and leukocyte counts (leukopenia). While it has been proposed that this variant is benign, prior studies have shown that the misinterpretation of Duffy-null associated neutropenia and leukopenia can lead to unnecessary bone marrow biopsies, inequities in cytotoxic and chemotherapeutic treatment courses, under-enrollment in clinical trials, and other disparities. To investigate the phenotypic correlates of Duffy-null status, we conducted a phenome-wide association study (PheWAS) across more than 1,400 clinical conditions in All of Us, the Vanderbilt University Medical Center's Biobank, and the Million Veteran Program.

View Article and Find Full Text PDF

Characterising patterns of genetic diversity including evidence of local adaptation is relevant for predicting and managing species recovering from overexploitation in the face of climate change. Red abalone (Haliotis rufescens) is a species of conservation concern due to recent declines from overharvesting, disease and climate change, resulting in the closure of commercial and recreational fisheries. Using whole-genome resequencing data from 23 populations spanning their entire range (southern Oregon, USA, to Baja California, MEX) we investigated patterns of population connectivity and genotype-environment associations that would reveal local adaptation across the mosaic of coastal environments that define the California Current System (CCS).

View Article and Find Full Text PDF

Premise: The ability of plants to adapt or acclimate to climate change is inherently linked to their interactions with symbiotic microbes, notably fungi. However, it is unclear whether fungal symbionts from different climates have different impacts on the outcome of plant-fungal interactions, especially under environmental stress.

Methods: We tested three provenances of fungal inoculum (originating from dry, moderate or wet environments) with one host plant genotype exposed to three soil moisture regimes (low, moderate and high).

View Article and Find Full Text PDF

Background: The mechanistic pathways that give rise to the extreme symptoms exhibited by rare disease patients are complex, heterogeneous, and difficult to discern. Understanding these mechanisms is critical for developing treatments that address the underlying causes of diseases rather than merely the presenting symptoms. Moreover, the same dysfunctional series of interrelated symptoms implicated in rare recessive diseases may also lead to milder and potentially preventable symptoms in carriers in the general population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!