The coronavirus disease (COVID-19) is caused by Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and presents with respiratory symptoms which can be life threatening in severe cases. At the start of the pandemic, allergy, asthma, and chronic obstructive pulmonary disease (COPD) were considered as risk factors for COVID-19 as they tend to exacerbate during respiratory viral infections. Recent literature has not shown that airway allergic diseases is a high-risk factor or that it increases the severity of COVID-19. This is due to a decrease in Angiotensin-converting enzyme 2 (ACE2) gene expression in the nose and bronchial cells of allergic airway diseases. Conventional asthma treatment includes inhaled corticosteroids (ICS), allergen immunotherapy (AIT), and biologics, and should be continued as they might reduce the risks of asthmatics for coronavirus infection by enhancing antiviral defence and alleviating inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7538174PMC
http://dx.doi.org/10.1007/s00405-020-06408-7DOI Listing

Publication Analysis

Top Keywords

allergic airway
8
severity covid-19
8
ace2 expression
4
expression allergic
4
airway disease
4
disease decrease
4
decrease risk
4
risk severity
4
covid-19
4
covid-19 coronavirus
4

Similar Publications

Targeting alarmins in asthma- From the bench to the clinic.

J Allergy Clin Immunol

January 2025

Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Ariz; Department of Medicine, Mayo Clinic, Scottsdale, Ariz; Department of Immunology, Mayo Clinic Rochester, Rochester, Minn; Department of Immunology, Mayo Clinic Arizona, Scottsdale, Ariz.

Over the past two decades, mechanistic studies of allergic and type 2 (T2)-mediated airway inflammation have led to multiple approved therapies for the treatment of moderate-to-severe asthma. The approval and availability of these monoclonal antibodies targeting immunoglobulin E, a type 2 cytokine (IL-5) and/or cytokine receptors (IL-5Rα, IL-4Rα) has been central to the progresses made in the management of moderate-to-severe asthma over this period. However, there are persistent gaps in clinician's ability to provide precise care given that many patients with type 2-high asthma do not respond to the IgE or T2 cytokine-targeting therapies and patients with type 2-low asthma have limited therapeutic options.

View Article and Find Full Text PDF

Increasing epidemiological evidence has proved that early-life exposure to inorganic arsenic (As) elevates the risks of childhood asthma. The present research aimed to explore susceptibility of respiratory As exposure to allergic asthma in a mouse model. BALB/c mice on postnatal day (PND) 28 were exposed to ddHO or NaAsO aerosol for 4 hours daily over 5 consecutive weeks via respiratory tract.

View Article and Find Full Text PDF

Inula japonica Thunb. and its active compounds ameliorate airway inflammation by suppressing JAK-STAT signaling.

Biomed Pharmacother

January 2025

KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, Republic of Korea. Electronic address:

Asthma, a chronic inflammatory disease, remains a global health challenge due to its complex pathophysiology and the limited treatment efficacy. This study explored the effect of Inula japonica Thunb. water extract (IJW) on asthma and its protective mechanisms.

View Article and Find Full Text PDF

Iron Drives Eosinophil Differentiation in Allergic Airway Inflammation Through Mitochondrial Metabolic Adaptation.

Adv Healthc Mater

January 2025

Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.

Eosinophils play a crucial role as effector cells in asthma pathogenesis, with their differentiation being tightly regulated by metabolic mechanisms. While the involvement of iron in various cellular processes is well known, its specific role in eosinophil differentiation has largely remained unexplored. This study demonstrates that iron levels are increased during the differentiation process from eosinophil progenitors to mature and activated eosinophils in the context of allergic airway inflammation.

View Article and Find Full Text PDF

Objective: The inflammatory role of female hormones has been garnering increased attention in the literature. Studies suggest a link between estrogen and inflammatory conditions of the airways and nasal mucosa. However, there remains a paucity of literature regarding the associations of hormones with rhinitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!