Study Design: Quantitative cross-sectional study.
Objectives: Evaluate the test-retest reliability and the construct validity of inertial measurement units (IMU) to characterize spatiotemporal gait parameters in individuals with SCI.
Setting: Two SCI rehabilitation centers in Canada.
Methods: Eighteen individuals with SCI participated in two evaluation sessions spaced 2 weeks apart. Fifteen able-bodied individuals were also recruited. Participants walked 20 m overground under five conditions that challenged balance to varying degrees. Five IMU were attached to the lower-extremities and the sacrum to collect the mean and the coefficient of variation of five gait parameters (gait cycle time, double-support percentage, cadence, stride length, stride velocity). Intra-class correlation coefficients (ICC) were used to evaluate the test-retest reliability. Linear mixed-effects models were used to compare the five walking conditions to evaluate known-group validity while Spearman's correlation coefficients were used to characterize the level of association between gait parameters and the Mini BESTest (MBT).
Results: Cadence was reliable across all walking conditions. Reliability was higher for the mean (ICC = 0.55-0.98) of the parameters compared to their coefficient of variation (ICC = 0.16-0.97). Cadence collected with IMU had construct validity as their values differed across walking conditions and groups of participants. The coefficient of variation was generally better than the mean to show differences across the five walking conditions. The MBT was moderately to strongly associated with mean cadence (ρ ≥ 0.498) and its coefficient of variation (ρ ≤ -0.49) during most walking conditions.
Conclusions: IMU provide reliable and valid measurements of gait parameters in ambulatory individuals with SCI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41393-020-00559-4 | DOI Listing |
PLoS One
January 2025
Department of Biomedical and Robotics Engineering, Incheon National University, Incheon, Korea.
Gait disturbance is one of the most common symptoms in patients with Parkinson's disease (PD) that is closely associated with poor clinical outcomes. Recently, video-based human pose estimation (HPE) technology has attracted attention as a cheaper and simpler method for performing gait analysis than marker-based 3D motion capture systems. However, it remains unclear whether video-based HPE is a feasible method for measuring temporospatial and kinematic gait parameters in patients with PD and how this function varies with camera position.
View Article and Find Full Text PDFNeurol Int
January 2025
Laboratório de Marcha, Centro de Medicina de Reabilitação de Alcoitão, 2649-506 Alcabideche, Portugal.
Background/objectives: Post-stroke hemiparetic gait often presents with asymmetric patterns to compensate for stability deficits. This study examines gait differences in chronic stroke patients with spastic hemiparesis based on initial foot contact type-forefoot versus rearfoot.
Methods: Thirty-four independently walking spastic hemiparetic patients were retrospectively analyzed.
Gels
December 2024
Department of Mechanics and Engineering Science, School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
Magnetic hydrogel soft robots have shown great potential in various fields. However, their contact dynamic behaviors are complex, considering stick-slip motion at the contact interface, and lack accurate computational models to analyze them. This paper improves the numerical computational method for hydrogel materials with magneto-mechanical coupling effect, analyses the inchworm-like contact motion of the biomimetic bipedal magnetic hydrogel soft robot, and designs and optimizes the robot's structure.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Pediatric Physical Medicine and Rehabilitation Unit, IRCCS Institute of Neurological Sciences, 40139 Bologna, Italy.
Automated Mechanical Peripheral Stimulation (AMPS) is emerging as a potential therapeutic tool for managing motor and non-motor symptoms in individuals with Parkinson's disease (PD), particularly in terms of improving gait, balance, and autonomic regulation. This scoping review aims to synthesize current evidence on AMPS's effectiveness for these outcomes. A review was conducted on MEDLINE, Cochrane Central, Scopus, PEDro, and Web of Science.
View Article and Find Full Text PDFClin Biomech (Bristol)
January 2025
Univ. Polytechnique Hauts-de-France, LAMIH, CNRS, UMR 8201, F-59313 Valenciennes, France.
Background: Multiple sclerosis induces locomotor impairments. The objective was to characterize the effects of Multiple Sclerosis on whole-body angular momentum control during gait initiation.
Methods: Fifteen patients with Multiple Sclerosis with Expanded Disability status scale of 2.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!