A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Temporal and spatial dynamics in the apple flower microbiome in the presence of the phytopathogen Erwinia amylovora. | LitMetric

Temporal and spatial dynamics in the apple flower microbiome in the presence of the phytopathogen Erwinia amylovora.

ISME J

Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA.

Published: January 2021

Plant microbiomes have important roles in plant health and productivity. However, despite flowers being directly linked to reproductive outcomes, little is known about the microbiomes of flowers and their potential interaction with pathogen infection. Here, we investigated the temporal spatial dynamics of the apple stigma microbiome when challenged with a phytopathogen Erwinia amylovora, the causal agent of fire blight disease. We profiled the microbiome from the stigmas of individual flowers, greatly increasing the resolution at which we can characterize shifts in the composition of the microbiome. Individual flowers harbored unique microbiomes at the operational taxonomic unit level. However, taxonomic analysis of community succession showed a population gradually dominated by bacteria within the families Enterobacteriaceae and Pseudomonadaceae. Flowers inoculated with E. amylovora established large populations of the phytopathogen, with pathogen-specific gene counts of >3.0 × 10 in 90% of the flowers. Yet, only 42% of inoculated flowers later developed fire blight symptoms. This reveals that pathogen abundance on the stigma is not sufficient to predict disease outcome. Our data demonstrate that apple flowers represent an excellent model in which to characterize how plant microbiomes establish, develop, and correlate with biological processes such as disease progression in an experimentally tractable plant organ.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7853089PMC
http://dx.doi.org/10.1038/s41396-020-00784-yDOI Listing

Publication Analysis

Top Keywords

temporal spatial
8
spatial dynamics
8
dynamics apple
8
phytopathogen erwinia
8
erwinia amylovora
8
plant microbiomes
8
flowers
8
fire blight
8
individual flowers
8
apple flower
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!