Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Plant microbiomes have important roles in plant health and productivity. However, despite flowers being directly linked to reproductive outcomes, little is known about the microbiomes of flowers and their potential interaction with pathogen infection. Here, we investigated the temporal spatial dynamics of the apple stigma microbiome when challenged with a phytopathogen Erwinia amylovora, the causal agent of fire blight disease. We profiled the microbiome from the stigmas of individual flowers, greatly increasing the resolution at which we can characterize shifts in the composition of the microbiome. Individual flowers harbored unique microbiomes at the operational taxonomic unit level. However, taxonomic analysis of community succession showed a population gradually dominated by bacteria within the families Enterobacteriaceae and Pseudomonadaceae. Flowers inoculated with E. amylovora established large populations of the phytopathogen, with pathogen-specific gene counts of >3.0 × 10 in 90% of the flowers. Yet, only 42% of inoculated flowers later developed fire blight symptoms. This reveals that pathogen abundance on the stigma is not sufficient to predict disease outcome. Our data demonstrate that apple flowers represent an excellent model in which to characterize how plant microbiomes establish, develop, and correlate with biological processes such as disease progression in an experimentally tractable plant organ.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7853089 | PMC |
http://dx.doi.org/10.1038/s41396-020-00784-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!