This work describes a simple method for the fabrication of an enzymatic electrode with high sensitivity to oxygen and good performance when applied as biocathode. Pencil graphite electrodes (PGE) were chosen as disposable transducers given their availability and good electrochemical response. After electrochemical characterization regarding hardness and surface pre-treatment suited modification with carbon-based nanostructures, namely with reduced graphene, MWCNT and carbon black for optimal performance was proceeded. The bioelectrode was finally assembled through immobilization of bilirubin oxidase (BOx) lashed on the modified surface of MWCNT via π-π stacking and amide bond functionalization. The high sensitivity towards dissolved oxygen of 648 ± 51 µA mM cm, and a LOD of 1.7 µM, was achieved for the PGE with surface previously modified with reduced graphene (rGO), almost the double registered for direct anchorage on the bare PGE surface. Polarization curves resulted in an open circuit potential (OCP) of 1.68 V (vs Zn electrode) and generated a maximum current density of about 650 μA cm in O saturated solution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7539011PMC
http://dx.doi.org/10.1038/s41598-020-73635-7DOI Listing

Publication Analysis

Top Keywords

pencil graphite
8
graphite electrodes
8
high sensitivity
8
reduced graphene
8
pge surface
8
nanostructured pencil
4
electrodes application
4
application high
4
high power
4
power biocathodes
4

Similar Publications

detection suffers from slow analysis time and high costs, along with the need for specificity. While state-of-the-art electrochemical biosensors are cost-efficient and easy to implement, their sensitivity and analysis time still require improvement. In this work, we present a paper-based electrochemical biosensor utilizing magnetic core-shell FeO@CdSe/ZnS quantum dots (MQDs) to achieve fast detection, low cost, and high sensitivity.

View Article and Find Full Text PDF

In the present work, a convenient, efficient and disposable electrochemical sensor has been developed by electropolymerizing methylene blue (PMB) on the surface of a pencil graphite electrode (PGE), which facilitates the electrochemical analysis of an antioxidant l-Ascorbic Acid (AA). The structural characteristics of both the methylene blue modified pencil graphite electrode (PMB/PGE) and the bare pencil graphite electrode (BPGE) have been examined using scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray analysis (EDX). Additionally, the charge transfer behavior has been evaluated using the electron impedance spectroscopy (EIS).

View Article and Find Full Text PDF

This study describes the synthesis of Co/Al-LDH through an electrochemical method on a pencil graphite substrate, followed by the partial conversion of Co/Al-LDH to CoO via a calcination method on the same substrate. The obtained sorbent served as an extraction phase for the direct solid-phase microextraction (SPME) of environmental pollutants, including chlorophenols and aromatic hydrocarbons, from wastewater samples. The extracted analytes were quantified using high-performance liquid chromatography-ultraviolet detection (HPLC-UV).

View Article and Find Full Text PDF
Article Synopsis
  • A novel differential pulse voltammetric (DPV) method is introduced for the sensitive detection of fenhexamid (FHX) using a disposable pencil graphite electrode (PGE), which is both affordable and effective.
  • The study examines the oxidation and reduction behavior of FHX at different pH levels, revealing specific voltage peaks for each process and establishing linear detection ranges for various concentrations of FHX.
  • The methodology shows high selectivity with minimal interference from other compounds, and recovery tests demonstrate its accuracy for analyzing FHX in environmental samples like water and soil.
View Article and Find Full Text PDF

Molecularly Imprinted Polymers (MIPs) are synthetic materials designed to selectively recognize and bind to specific target molecules. The process of determining Bupropion (BUP) using MIPs involves preparing the MIP, extracting the target molecule, and conducting subsequent analysis. A bio-inspired MIP-based electrochemical sensor was developed to detect BUP, utilizing the specific binding of MIPs to Bupropion molecules, enabling precise and sensitive detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!