The crystal structure of MAPbI, the signature compound of the hybrid halide perovskites, at room temperature has been a reason for debate and confusion in the past. Part of this confusion may be due to twinning as the material bears a phase transition just above room temperature, which follows a direct group-subgroup relationship and is prone to twinning. Using neutron Laue diffraction, we illustrate the nature of twinning in the room temperature structure of MAPbI and explain its origins from a group-theoretical point-of-view.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7538425 | PMC |
http://dx.doi.org/10.1038/s41598-020-73487-1 | DOI Listing |
J Med Case Rep
December 2024
Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
Background: Severe acute respiratory syndrome coronavirus 2 was found first in Wuhan and declared a pandemic by the World Health Organization. Coinfection with other respiratory viruses may occur, complicating the diagnosis and treatment of coronavirus disease 2019 . Herein, we identified a Karolinska Institute polyomavirus Stockholm 60 present in a nasopharyngeal swab of a patient with severe acute respiratory syndrome coronavirus 2 infection using next-generation sequencing with an enrichment method.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Science, Chemistry Department, Cairo University, Giza, 12613, Egypt.
The swift rise of hazardous dye effluent from diverse sectors continues to be a severe public health problem and a top priority for environmental preservation, presenting a significant obstacle to the current conventional water treatment systems. This study aims to develop an efficient and reusable approach for removing cresyl fast violet dye using mullite nanoparticles. Some factors such as pH, nano-mullite dosage, agitation speed, time, and others that affect the removal process were studied.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Aalto University, Department of Electronics and Nanoengineering, Espoo, Finland.
Even though efficient near-infrared (NIR) detection is critical for numerous applications, state-of-the-art NIR detectors either suffer from limited capability of detecting incoming photons, i.e., have poor spectral responsivity, or are made of expensive group III-V non-CMOS compatible materials.
View Article and Find Full Text PDFACS Nano
December 2024
State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai 200083, China.
The demand for broadband, room-temperature infrared, and terahertz (THz) detectors is rapidly increasing owing to crucial applications in telecommunications, security screening, nondestructive testing, and medical diagnostics. Current photodetectors face significant challenges, including high intrinsic dark currents and the necessity for cryogenic cooling, which limit their effectiveness in detecting low-energy photons. Here, we introduce a high-performance ultrabroadband photodetector operating at room temperature based on two-dimensional black arsenene (b-As) nanosheets.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China. Electronic address:
The self-assembled peptide RADA16-I (RADARADARADARADA) has been widely used in biomaterials. However, studies on the practical application of self-assembled peptide hydrogels loaded with bioactive peptides are still insufficient. In this study, we successfully prepared the peptide nanofiber gel RGJ by incorporating the bioactive peptides A8SGLP-1 (G) and Jagged-1 (J) into RADA16-I (R) in specific ratios.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!