Injurious home-cage aggression (fighting) in mice affects both animal welfare and scientific validity. It is arguably the most common potentially preventable morbidity in mouse facilities. Existing literature on mouse aggression almost exclusively examines territorial aggression induced by introducing a stimulus mouse into the home-cage of a singly housed mouse (i.e. the resident/intruder test). However, fighting occurring in mice living together in long-term groups under standard laboratory housing conditions has barely been studied. We performed a point-prevalence epidemiological survey of fighting at a research institution with an approximate 60,000 cage census. A subset of cages was sampled over the course of a year and factors potentially influencing home-cage fighting were recorded. Fighting was almost exclusively seen in group-housed male mice. Approximately 14% of group-housed male cages were observed with fighting animals in brief behavioral observations, but only 14% of those cages with fighting had skin injuries observable from cage-side. Thus simple cage-side checks may be missing the majority of fighting mice. Housing system (the combination of cage ventilation and bedding type), genetic background, time of year, cage location on the rack, and rack orientation in the room were significant risk factors predicting fighting. Of these predictors, only bedding type is easily manipulated to mitigate fighting. Cage ventilation and rack orientation often cannot be changed in modern vivaria, as they are baked in by cookie-cutter architectural approaches to facility design. This study emphasizes the need to invest in assessing the welfare costs of new housing and husbandry systems before implementing them.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7538892PMC
http://dx.doi.org/10.1038/s41598-020-73620-0DOI Listing

Publication Analysis

Top Keywords

fighting
10
fighting mice
8
group-housed male
8
cage ventilation
8
bedding type
8
rack orientation
8
mice
5
epidemiology fighting
4
fighting group-housed
4
group-housed laboratory
4

Similar Publications

Background: Biological control in integrated pest management (IPM) often overlooked avian predators until the emergence of the ecosystem services approach. Birds are now recognized as key regulators of pest populations in agroforestry landscapes due to their high mobility. The invasive yellow-legged hornet, introduced into Europe in 2004, threatens agriculture, beekeeping and native pollinators.

View Article and Find Full Text PDF

Detection of anomalies in video surveillance plays a key role in ensuring the safety and security of public spaces. The number of surveillance cameras is growing, making it harder to monitor them manually. So, automated systems are needed.

View Article and Find Full Text PDF

Head and neck cancer is a deadly disease with over 500,000 cases annually worldwide. Metastatic head and neck cancer accounts for a large proportion of the mortality associated with this disease. Many advances have been made in our understanding of the mechanisms of metastasis.

View Article and Find Full Text PDF

The Unripe Carob Extract ( L.) as a Potential Therapeutic Strategy to Fight Oxaliplatin-Induced Neuropathy.

Nutrients

December 2024

Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy.

Background: Oxaliplatin-induced neuropathy (OIN) is a severe painful condition that strongly affects the patient's quality of life and cannot be counteracted by the available drugs or adjuvants. Thus, several efforts are devoted to discovering substances that can revert or reduce OIN, including natural compounds. The carob tree, L.

View Article and Find Full Text PDF

Fighting Fire with Fire: Impact of Sugary Diets on Metabolically Deranged Mice.

Nutrients

December 2024

Department of Neuroscience & Behavior, Barnard College, Columbia University, New York, NY 10027, USA.

There is controversy about the health risks of sugary diets. A recent study reported that chronic consumption of 11% sugar solutions improved glycemic control in lean mice. Based on this finding, we hypothesized that chronic consumption of the same 11% sugar solutions would also improve glycemic control in metabolically deranged mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!