How to convert heat energy into other forms of usable energy more efficiently is always crucial for our human society. In traditional heat engines, such as the steam engine and the internal combustion engine, high-grade heat energy can be easily converted into mechanical energy, while a large amount of low-grade heat energy is usually wasted owing to its disadvantage in the temperature level. In this work, for the first time, the generation of mechanical energy from both high- and low-temperature steam is implemented by a hydrophilic polymer membrane. When exposed to water vapor with a temperature ranging from 50 to 100 °C, the membrane repeats rolling from one side to another. In nature, this continuously rolling of membrane is powered by the steam, like a miniaturized "steam engine". The differential concentration of water vapor (steam) on the two sides of the membrane generates the asymmetric swelling, the curve, and the rolling of the membrane. In particular, results suggest that this membrane based "steam engine" can be powered by the steam with a relatively very low temperature of 50 °C, which indicates a new approach to make use of both the high- and low-temperature heat energy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7538585 | PMC |
http://dx.doi.org/10.1038/s41598-020-73732-7 | DOI Listing |
Sci Rep
January 2025
Department of Mechanical Engineering, College of Engineering and Computer Sciences, Jazan University, P.O Box 45124, Jazan, Saudi Arabia.
Fluid flow across a Riga Plate is a specialized phenomenon studied in boundary layer flow and magnetohydrodynamic (MHD) applications. The Riga Plate is a magnetized surface used to manipulate boundary layer characteristics and control fluid flow properties. Understanding the behavior of fluid flow over a Riga Plate is critical in many applications, including aerodynamics, industrial, and heat transfer operations.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Agricultural Engineering, Kongunadu College of Engineering and Technology, Trichy, Tamil Nadu, India.
This study investigates the enhancement of solar cell efficiency using nanofluid cooling systems, focusing on citrate-stabilized and PVP-stabilized silver nanoparticles. Traditional silicon-based and perovskite solar cells were examined to assess the impact of these nanofluids on efficiency improvement and thermal management. A Central Composite Design (CCD) was employed to vary nanoparticle concentration (0.
View Article and Find Full Text PDFCommun Eng
January 2025
Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China.
Conventional electronic chip packaging generates a huge thermal resistance due to the low thermal conductivity of the packaging materials that separate chip dies and coolant. Here we propose and fabricate a closed high-conducting heat chip package based on passive phase change, using silicon carbide which is physically and structurally compatible with chip die materials. Our "chip on vapor chamber" (CoVC) concept realizes rapid diffusion of hot spots, and eliminates the high energy consumption of refrigeration ordinarily required for heat management.
View Article and Find Full Text PDFJ Anim Sci Biotechnol
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Background: The diverse types and processing methods of grains intricately influence the sites and digestibility of starch digestion, thereby impacting energy utilization. This study aimed to explore the impact of grain variety and processing methods on the net energy (NE) in dairy goats, analyzing these effects at the level of nutrient digestion and metabolism.
Methods: Eighteen castrated Guanzhong dairy goats (44.
ACS Nano
January 2025
State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
Intensifying the severity of electromagnetic (EM) pollution in the environment represents a significant threat to human health and results in considerable energy wastage. Here, we provide a strategy for electricity generation from heat generated by electromagnetic wave radiation captured from the surrounding environment that can reduce the level of electromagnetic pollution while alleviating the energy crisis. We prepared a porous, elastomeric, and lightweight BiTe/carbon aerogel (CN@BiTe) by a simple strategy of induced in situ growth of BiTe nanosheets with three-dimensional (3D) carbon structure, realizing the coupling of electromagnetic wave absorption (EMA) and thermoelectric (TE) properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!