A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-latitude biomes and rock weathering mediate climate-carbon cycle feedbacks on eccentricity timescales. | LitMetric

The International Ocean Discovery Programme (IODP) and its predecessors generated a treasure trove of Cenozoic climate and carbon cycle dynamics. Yet, it remains unclear how climate and carbon cycle interacted under changing geologic boundary conditions. Here, we present the carbon isotope (δC) megasplice, documenting deep-ocean δC evolution since 35 million years ago (Ma). We juxtapose the δC megasplice with its δO counterpart and determine their phase-difference on ~100-kyr eccentricity timescales. This analysis reveals that 2.4-Myr eccentricity cycles modulate the δC-δO phase relationship throughout the Oligo-Miocene (34-6 Ma), potentially through changes in continental weathering. At 6 Ma, a striking switch from in-phase to anti-phase behaviour occurs, signalling a reorganization of the climate-carbon cycle system. We hypothesize that this transition is consistent with Arctic cooling: Prior to 6 Ma, low-latitude continental carbon reservoirs expanded during astronomically-forced cool spells. After 6 Ma, however, continental carbon reservoirs contract rather than expand during cold periods due to competing effects between Arctic biomes (ice, tundra, taiga). We conclude that, on geologic timescales, System Earth experienced state-dependent modes of climate-carbon cycle interaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7538577PMC
http://dx.doi.org/10.1038/s41467-020-18733-wDOI Listing

Publication Analysis

Top Keywords

climate-carbon cycle
12
eccentricity timescales
8
climate carbon
8
carbon cycle
8
δc megasplice
8
continental carbon
8
carbon reservoirs
8
cycle
5
carbon
5
high-latitude biomes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!