AI Article Synopsis

  • Voxel-based morphometry (VBM) analysis of MRI is used to detect medial temporal lobe (MTL) atrophy, which can help diagnose Alzheimer's disease, but its clinical reliability is unverified.
  • A study compared VBM results with amyloid PET scans, revealing significant MTL atrophy in amyloid-positive patients, but substantial overlap between the two groups indicated issues with distinguishing them.
  • While some differences were noted in Mini-Mental State Examination (MMSE) scores between groups, the ability of VBM to reliably differentiate between amyloid-positive and negative patients in clinical practice was limited, possibly due to overlapping symptoms with other dementia diseases.

Article Abstract

Voxel-based morphometry (VBM) analysis of nuclear Magnetic Resonance Imaging (MRI) data allows the identification of medial temporal lobe (MTL) atrophy and is widely used to assist the diagnosis of Alzheimer's disease (AD). However, its reliability in the clinical environment has not yet been confirmed. To determine the credibility of VBM, amyloid positron emission tomography (PET) and VBM studies were compared retrospectively. Patients who underwent Pittsburgh Compound B (PiB) PET were retrospectively recruited. Ninety-seven patients were found to be amyloid negative and 116 were amyloid positive. MTL atrophy in the PiB positive group, as quantified by thin sliced 3D MRI and VBM software, was significantly more severe (p =0.0039) than in the PiB negative group. However, data histogram showed a vast overlap between the two groups. The area under the ROC curve (AUC) was 0.646. MMSE scores of patients in the amyloid negative and positive groups were also significantly different ( = 0.0028), and the AUC was 0.672. Thus, MTL atrophy could not reliably differentiate between amyloid positive and negative patients in a clinical setting, possibly due to the wide array of dementia-type diseases that exist other than AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7732322PMC
http://dx.doi.org/10.18632/aging.104012DOI Listing

Publication Analysis

Top Keywords

mtl atrophy
12
voxel-based morphometry
8
medial temporal
8
temporal lobe
8
alzheimer's disease
8
patients amyloid
8
amyloid negative
8
amyloid positive
8
amyloid
6
morphometry focusing
4

Similar Publications

Neural deterioration and compensation in visual short-term memory among individuals with amnestic mild cognitive impairment.

Alzheimers Dement

January 2025

Guangdong Provincial Key Laboratory of Brain Function and Disease, Center for Brain and Mental Well-Being, Department of Psychology, Sun Yat-sen University, Guangzhou, China.

Introduction: Visual short-term memory (VSTM) is a critical indicator of Alzheimer's disease (AD), but whether its neural substrates could adapt to early disease progression and contribute to cognitive resilience in amnestic mild cognitive impairment (aMCI) has been unclear.

Methods: Fifty-five aMCI patients and 68 normal controls (NC) performed a change-detection task and underwent multimodal neuroimaging scanning.

Results: Among the atrophic brain regions in aMCI, VSTM performance correlated with the volume of the right prefrontal cortex (PFC) but not the medial temporal lobe (MTL), and this correlation was mainly present in patients with greater MTL atrophy.

View Article and Find Full Text PDF

Background: Lewy body disorders (LBD), encompassing Parkinson disease (PD), PD dementia (PDD), and dementia with Lewy bodies (DLB), are characterized by alpha-synuclein pathology but often are accompanied by Alzheimer's disease (AD) neuropathological change (ADNC). The medial temporal lobe (MTL) is a primary locus of tau accumulation and associated neurodegeneration in AD. However, it is unclear the extent to which AD copathology in LBD (LBD/AD+) contributes to MTL-specific patterns of degeneration.

View Article and Find Full Text PDF

Aims/hypothesis: Wolfram syndrome 1 (WS1) is an inherited condition mainly manifesting in childhood-onset diabetes mellitus and progressive optic nerve atrophy. The causative gene, WFS1, encodes wolframin, a master regulator of several cellular responses, and the gene's mutations associate with clinical variability. Indeed, nonsense/frameshift variants correlate with more severe symptoms than missense/in-frame variants.

View Article and Find Full Text PDF

Early stages of Alzheimer's disease (AD) are associated with volume reductions in specific subregions of the medial temporal lobe (MTL). Using a manual segmentation method-the Olsen-Amaral-Palombo (OAP) protocol-previous work in healthy older adults showed that reductions in grey matter volumes in MTL subregions were associated with lower scores on the Montreal Cognitive Assessment (MoCA), suggesting atrophy may occur prior to diagnosis of mild cognitive impairment, a condition that often progresses to AD. However, current "gold standard" manual segmentation methods are labour intensive and time consuming.

View Article and Find Full Text PDF

Genetic and clinical correlates of two neuroanatomical AI dimensions in the Alzheimer's disease continuum.

Transl Psychiatry

October 2024

Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Article Synopsis
  • Alzheimer's disease (AD) exhibits varied brain atrophy patterns, identified through a semi-supervised learning technique (Surreal-GAN) that distinguishes between "diffuse-AD" (widespread atrophy) and "MTL-AD" (focal atrophy in the medial temporal lobe) dimensions in patients with mild cognitive impairment (MCI) and AD.
  • Only the "MTL-AD" dimension was linked to known AD genetic risk factors like APOE ε4, and both dimensions were later detected in asymptomatic individuals, revealing their association with different genetic and pathological mechanisms.
  • Aside from brain-related genes, up to 77 additional genes were identified in various organs, pointing to broader
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!