Only four species, , , , and , together account for about 90% of all bloodstream infections and are among the most common causes of invasive fungal infections of humans. However, virulence potential varies among these species, and the phylogenetic tree reveals that their pathogenicity may have emerged several times independently during evolution. We therefore tested these four species in a human whole-blood infection model to determine, via comprehensive dual-species RNA-sequencing analyses, which fungal infection strategies are conserved and which are recent evolutionary developments. The infection progressed from initial immune cell interactions to nearly complete killing of all fungal cells. During the course of infection, we characterized important parameters of pathogen-host interactions, such as fungal survival, types of interacting immune cells, and cytokine release. On the transcriptional level, we obtained a predominantly uniform and species-independent human response governed by a strong upregulation of proinflammatory processes, which was downregulated at later time points after most of the fungal cells were killed. In stark contrast, we observed that the different fungal species pursued predominantly individual strategies and showed significantly different global transcriptome patterns. Among other findings, our functional analyses revealed that the fungal species relied on different metabolic pathways and virulence factors to survive the host-imposed stress. These data show that adaptation of species as a response to the host is not a phylogenetic trait, but rather has likely evolved independently as a prerequisite to cause human infections. To ensure their survival, pathogens have to adapt immediately to new environments in their hosts, for example, during the transition from the gut to the bloodstream. Here, we investigated the basis of this adaptation in a group of fungal species which are among the most common causes of hospital-acquired infections, the species. On the basis of a human whole-blood infection model, we studied which genes and processes are active over the course of an infection in both the host and four different pathogens. Remarkably, we found that, while the human host response during the early phase of infection is predominantly uniform, the pathogens pursue largely individual strategies and each one regulates genes involved in largely disparate processes in the blood. Our results reveal that , , , and all have developed individual strategies for survival in the host. This indicates that their pathogenicity in humans has evolved several times independently and that genes which are central for survival in the host for one species may be irrelevant in another.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7542370 | PMC |
http://dx.doi.org/10.1128/mBio.02435-20 | DOI Listing |
Curr Microbiol
December 2024
Yunnan Institute of Microbiology, Chenggong Campus of Yunnan University, Chenggong District, Kunming, 650500, China.
A Gram-stain-positive, aerobic, yellow-pigmented, catalase-positive, oxidase-positive, non-motile with no flagella and irregularly rod-shaped, denominated strain YIM 134122, was isolated from a Stereocaulon tomentosum Fr. lichen gathered on Baima Snow Mountain in Diqing Tibetan Autonomous Prefecture, Yunnan Province, China. The novel strain grew at pH 6.
View Article and Find Full Text PDFAppl Biochem Biotechnol
December 2024
Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, India.
Early childhood caries (ECC), a severe form of dental caries, is exacerbated by the synergistic interaction between Streptococcus mutans and Candida albicans, leading to greater disease severity than their individual effects. This underscores the need for more targeted and potent therapeutic alternatives. Given the promising anti-infective properties of quaternary ammonium surfactants (QAS), this study explores the microbicidal properties of one such QAS, cetyltrimethylammonium chloride (CTAC), against both individual- and dual-species cultures of S.
View Article and Find Full Text PDFCurr Microbiol
December 2024
Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, 26339, Republic of Korea.
During the study of microbial diversity of forest soil in the Republic of Korea, a yellow pigment-producing, Gram-stain-negative, rod-shaped, motile bacterium was isolated and designated as strain 1W2. This strain grew at temperature of 10-37 °C, at pH of 5.0-9.
View Article and Find Full Text PDFBMC Res Notes
December 2024
Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Box 63, Buea, Cameroon.
Objectives: Methicillin-resistant Staphylococcus aureus (MRSA) is a zoonotic pathogen that poses a serious threat to veterinary and public health worldwide. We investigated mastitis milk samples for contamination with MRSA and also characterized the MRSA isolates by investigating antimicrobial resistance and virulence factors.
Result: We confirmed MRSA in 69 of 201 (34.
BMC Pediatr
December 2024
Research Product Department, R&D Center, Glac Biotech Co., Ltd, Tainan City, Taiwan.
Background: Breast milk is a natural treasure for infants, and its microbiota contains a rich array of bacterial species. When breastfeeding is not possible, infant formula with probiotics can be used as a sole source or as a breast milk supplement. The main aim of this study was to evaluate the growth outcomes and tolerance of infants consuming an infant formula containing Bifidobacterium animalis ssp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!