Virulence potential of strains recovered from pigs in Spain.

Vet Rec

Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain

Published: November 2020

Background: is a foodborne bacterial pathogen that causes listeriosis, an infectious disease in animals and people, with pigs acting as asymptomatic reservoirs. In August 2019 an outbreak associated with the consumption of pork meat caused 222 human cases of listeriosis in Spain. Determining the diversity as well as the virulence potential of strains from pigs is important to public health.

Methods: The behaviour of 23 strains recovered from pig tonsils, meat and skin was compared by studying (1) internalin A, internalin B, listeriolysin O, actin assembly-inducing protein and PrfA expression levels, and (2) their invasion and intracellular growth in eukaryotic cells.

Results: Marked differences were found in the expression of the selected virulence factors and the invasion and intracellular replication phenotypes of strains. Strains obtained from meat samples and belonging to serotype 1/2a did not have internalin A anchored to the peptidoglycan. Some strains expressed higher levels of the studied virulence factors and invaded and replicated intracellularly more efficiently than an epidemic reference strain (F2365).

Conclusion: This study demonstrates the presence of virulent strains with virulent potential in pigs, with valuable implications in veterinary medicine and food safety.

Download full-text PDF

Source
http://dx.doi.org/10.1136/vr.105945DOI Listing

Publication Analysis

Top Keywords

virulence potential
8
potential strains
8
strains recovered
8
invasion intracellular
8
virulence factors
8
strains
7
virulence
4
pigs
4
recovered pigs
4
pigs spain
4

Similar Publications

Exploring nagZ as a virulence biomarker and treatment target in Enterobacter cloacae.

BMC Microbiol

January 2025

Department of Laboratory Medicine, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P.R. China.

Background: Enterobacter cloacae is increasingly prevalent and resistant to multiple antibiotics, making it a significant pathogen in healthcare settings with high mortality rates. However, its pathogenic mechanisms are not fully understood.

Results: In this study, we explored the role of nagZ in regulating the virulence of E.

View Article and Find Full Text PDF

Trichophyton indotineae, first identified in India, has increasingly been reported in Asia, the Middle East, Europe, and recently in the USA. The global spread of terbinafine-resistant T. indotineae underscores the urgency of the issue.

View Article and Find Full Text PDF

In addressing the formidable challenge posed by methicillin-resistant Staphylococcus aureus (MRSA), this investigation elucidates a novel therapeutic paradigm by specifically targeting the virulence factor sortase A (SrtA) utilizing Tubuloside A (TnA). SrtA plays a critical role in the pathogenicity of MRSA, primarily by anchoring surface proteins to the bacterial cell wall, which is crucial for the bacterium's ability to colonize and infect host tissues. By inhibiting SrtA, TnA offers a novel and distinct strategy compared to traditional antibiotics.

View Article and Find Full Text PDF

Asymptomatic infection and antibody prevalence to co-occurring avian influenza viruses vary substantially between sympatric seabird species following H5N1 outbreaks.

Sci Rep

January 2025

Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK.

Emerging infectious diseases are of major concern to animal and human health. Recent emergence of high pathogenicity avian influenza virus (HPAIV) (H5N1 clade 2.3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!