Background And Objectives: Endothelial dysfunction is common among patients with CKD. We tested the efficacy and safety of combination treatment with sodium nitrite and isoquercetin on biomarkers of endothelial dysfunction in patients with CKD.

Design, Setting, Participants, & Measurements: This randomized, double-blind, placebo-controlled phase 2 pilot trial enrolled 70 patients with predialysis CKD. Thirty-five were randomly assigned to combination treatment with sodium nitrite (40 mg twice daily) and isoquercetin (225 mg once daily) for 12 weeks, and 35 were randomly assigned to placebo. The primary outcome was mean change in flow-mediated vasodilation over the 12-week intervention. Secondary and safety outcomes included biomarkers of endothelial dysfunction, inflammation, and oxidative stress as well as kidney function, methemoglobin, and adverse events. Intention-to-treat analysis was conducted.

Results: Baseline characteristics, including age, sex, race, cigarette smoking, history of hypertension and diabetes, use of renin-angiotensin system blockers, BP, fasting glucose, lipid profile, kidney function, urine albumin-creatinine ratio, and endothelial biomarkers, were comparable between groups. Over the 12-week intervention, flow-mediated vasodilation increased 1.1% (95% confidence interval, -0.1 to 2.3) in the treatment group and 0.3% (95% confidence interval, -0.9 to 1.5) in the placebo group, and net change was 0.8% (95% confidence interval, -0.9 to 2.5). In addition, changes in biomarkers of endothelial dysfunction (vascular adhesion molecule-1, intercellular adhesion molecule-1, E-selectin, vWf, endostatin, and asymmetric dimethylarginine), inflammation (TNF-, IL-6, C-reactive protein, IL-1 receptor antagonist, and monocyte chemoattractant protein-1), and oxidative stress (oxidized LDL and nitrotyrosines) were not significantly different between the two groups. Furthermore, changes in eGFR, urine albumin-creatinine ratio, methemoglobin, and adverse events were not significantly different between groups.

Conclusions: This randomized phase 2 pilot trial suggests that combination treatment with sodium nitrite and isoquercetin did not significantly improve flow-mediated vasodilation or other endothelial function biomarkers but also did not increase adverse events compared with placebo among patients with CKD.

Clinical Trial Registry Name And Registration Number: Nitrite, Isoquercetin, and Endothelial Dysfunction (NICE), NCT02552888.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7646238PMC
http://dx.doi.org/10.2215/CJN.02020220DOI Listing

Publication Analysis

Top Keywords

endothelial dysfunction
24
combination treatment
16
treatment sodium
16
sodium nitrite
16
nitrite isoquercetin
16
phase pilot
12
pilot trial
12
biomarkers endothelial
12
flow-mediated vasodilation
12
adverse events
12

Similar Publications

Endothelial-Ercc1 DNA repair deficiency provokes blood-brain barrier dysfunction.

Cell Death Dis

January 2025

Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.

Aging of the brain vasculature plays a key role in the development of neurovascular and neurodegenerative diseases, thereby contributing to cognitive impairment. Among other factors, DNA damage strongly promotes cellular aging, however, the role of genomic instability in brain endothelial cells (EC) and its potential effect on brain homeostasis is still largely unclear. We here investigated how endothelial aging impacts blood-brain barrier (BBB) function by using excision repair cross complementation group 1 (ERCC1)-deficient human brain ECs and an EC-specific Ercc1 knock out (EC-KO) mouse model.

View Article and Find Full Text PDF

The opioid epidemic endangers not only public health but also social and economic welfare. Growing clinical evidence indicates that chronic use of prescription opioids may contribute to an elevated risk of ischemic stroke and negatively impact post-stroke recovery. In addition, NLRP3 inflammasome activation has been related to several cerebrovascular diseases, including ischemic stroke.

View Article and Find Full Text PDF

Cinnamic acid lowers blood pressure and reverses vascular endothelial dysfunction in rats.

J Food Drug Anal

December 2024

Cardiovascular Research Group, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad-22060, KP, Pakistan.

Cinnamic acid (CA) possesses important cardiovascular effects such as cardioprotective, antiatherogenic, antihyperlipidemic and antioxidant, which predicts its potential role in the treatment of hypertension. The study was executed to investigate the antihypertensive potential of CA in Sprague Dawley (SD) rats followed by evaluation in diverse vascular preparations. Invasive blood pressure monitoring technique was used in normotensive and hypertensive rats, under anesthesia.

View Article and Find Full Text PDF

Antihypertensive effects of rice peptides involve intestinal microbiome alterations and intestinal inflammation alleviation in spontaneously hypertensive rats.

Food Funct

January 2025

Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.

Gut dysbiosis serves as an underlying risk factor for the development of hypertension. The resolution of this dysbiosis has emerged as a promising strategy in improving hypertension. Food-derived bioactive protein peptides have become increasingly more attractive in ameliorating hypertension, primarily due to their anti-inflammatory and anti-oxidant activities.

View Article and Find Full Text PDF

Co-delivery of antioxidants and siRNA-VEGF: promising treatment for age-related macular degeneration.

Drug Deliv Transl Res

January 2025

Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, CEP 30510-010, Minas Gerais, Brazil.

Current treatments for retinal disorders are anti-angiogenic agents, laser photocoagulation, and photodynamic therapies. These conventional treatments focus on reducing abnormal blood vessel formation in the retina, which, in a low-oxygen environment, can lead to harmful proliferation of endothelial cells. This results in dysfunctional, leaky blood vessels that cause retinal edema, hemorrhage, and vision loss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!