Fabrication of multifunctional scaffolds with biomimicking physical and biological signals play an important role in enhancing tissue regeneration. Multifunctional features come from the composite scaffold with various bioactive molecules. However, simple, biocompatible, and controllable hybridization strategy is still lacking. In this study, we leverage naturally derived extracellular matrix (ECM) as chemically controllable hydrogel carrier to effectively load functional biomolecules. The use of ECM hydrogel takes advantage of both native functionality of ECM components and tunability of hydrogel in controlling release of loaded molecules. As a proof of concept, porous acellular bone scaffold was selected as the solid pristine scaffold to be composited with BMP-2 and VEGF, which are loaded by spinal cord-derived ECM (SC-ECM) hydrogel. Crosslinking degree of SC-ECM hydrogel is tuned by changing genipin concentration, which renders the control over release kinetics of BMP-2 and VEGF. The mechanical strength of scaffold maintained after hybridization and is not significantly decreased in wet condition. evaluations of scaffolds cocultured with osteoblasts and mesenchymal stem cells (MSCs) demonstrate the biocompatible and bioactive features resulting from the composite scaffolds. Evidenced by alkaline phosphatase test, immunofluorescence, and real-time polymerase chain reaction, differentiation of MSCs towards osteoblast lineage is significantly enhanced by composite scaffolds. Therefore, our strategy in fabricating composite scaffold enabled by biomolecule-loaded ECM hydrogel holds great promise in regenerating diverse tissue types by appropriate combinations of solid pristine scaffolds, ECM, and bioactive molecules. Impact statement We developed a bioactive molecule (e.g., growth factor, protein) loading method using extracellular matrix hydrogel as a carrier. It brings a new strategy to fabricate composite scaffolds with unique biofunctions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.TEA.2020.0187 | DOI Listing |
ACS Appl Bio Mater
January 2025
Institute of Physics and Materials Science, Department of Natural Sciences and Sustainable Ressources, BOKU University, Peter Jordan-Straß 82, 1190 Vienna, Austria.
Spider silk (SPSI) is a promising candidate for use as a filler material in nerve guidance conduits (NGCs), facilitating peripheral nerve regeneration by providing a scaffold for Schwann cells (SCs) and axonal growth. However, the specific properties of SPSI that contribute to its regenerative success remain unclear. In this study, the egg sac silk of is investigated, which contains two distinct fiber types: tubuliform (TU) and major ampullate (MA) silk.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
In vitro skin aging models represent a valuable tool for the study of age-related pathologies and potential treatments. However, the currently available models do not adequately represent the complex microenvironment of the dermis since they generally focus on cutaneous cellular senescence, rather than the full range of factors that contribute to the aging process, such as structural and compositional alteration of the dermal extracellular matrix. The following protocol describes the extraction and characterization of human adult extracellular matrix scaffolds for use in in vitro aging models.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Orthopedic Surgery, The Second Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian City, Liaoning 116021, China.
The use of bioresorbable compositions has been considered a promising therapeutic approach for treating compromised bone tissues. Gellan gum (GG) is a predominant polysaccharide recognized for its exceptional biocompatibility and biodegradability, facile bio-fabrication, and customizable mechanical attributes, rendering it well-suited for developing versatile bone scaffolds. On the other hand, MXene nanosheets have been declared a representational filler to augment the osteogenic effect and amend the mechanical properties of the polymeric biomaterials.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China.
In the context of regenerative medicine, the design of scaffolds to possess excellent osteogenesis and appropriate mechanical properties has gained significant attention in bone tissue engineering. In this review, we categorized materials into metallic, inorganic, nonmetallic, organic polymer, and composite materials. This review provides a more integrated and multidimensional analysis of scaffold design for bone tissue engineering.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemistry, Government First Grade College Chamarajanagar (Affiliated to Chamarajanagar University), Chamarajanagar, Karnataka, India.
Metal-Organic Frameworks (MOFs) gaining increasing interest in heterogeneous catalysis owing to their advantageous properties such as superior porosity, high surface area, ample catalytic sites. Their properties can be tailored by varying the metal ions or metal clusters (nodes) and organic linkers. Magnetically active nano core-shell MOF composites are also discovered for easy separation and reuse of catalyst.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!