Spherical ruthenium nanoparticles (NPs) with a narrow size distribution were synthesised in ethanol by a facile low-temperature solvothermal process without the assistance of templates, structure-directing agents or post annealing/reduction treatments. Surface passivation with a fluorescent perylene dye (EP), and with silane ligands (ETMS), both initially bearing alkyne groups and subsequently forming vinylidene linkages, provided stable suspensions of the marginally soluble free EP. Quantitative analysis of the suspension gave an estimated EP surface coverage of 15 %, corresponding to an EP/ETMS mole ratio of ≈1:6. Photophysical evaluation of the bound and free dye revealed similar absorption bands and extinction coefficients and improved properties for the bound state, including enhanced fluorescence in the visible range for the bound dye, an extended absorption range into the near-UV providing strong emission in the visible, and significantly improved photostability. The physical basis of the enhanced photophysical properties, potential routes to further improvements and the implications for applications are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202003514 | DOI Listing |
ACS Biomater Sci Eng
January 2025
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.
The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.
View Article and Find Full Text PDFEnzymatic asymmetric synthesis of l-phenylglycine by amino acid dehydrogenases has potential for industrial applications; however, this is hindered by their low catalytic efficiency toward high-concentration substrates. We identified and characterized a novel leucine dehydrogenase (LeuDH) with a high catalytic efficiency for benzoylformic acid via directed metagenomic approaches. Further, we obtained a triple-point mutant LeuDH-EER (D332E/G333E/L334R) with improved stability and catalytic efficiency through the rational design of distal loop 13.
View Article and Find Full Text PDFJ Mol Model
January 2025
Nanjing Hydraulic Research Institute, Shanghai, China.
Context: This study systematically investigated the effects of single S-atom vacancy defects and composite defects (vacancy combined with doping) on the properties of MoS using density functional theory. The results revealed that N-doped S-vacancy MoS has the smallest composite defect formation energy, indicating its highest stability. Doping maintained the direct band gap characteristic, with shifts in the valence band top.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-530, Lodz, Poland.
In recent years, there has been a surge in the production of kombucha-a functional beverage obtained via microbial fermentation of tea. However, fresh, unpasteurized kombucha is sensitive to quality deterioration as a result of, among other factors, oxidation. The addition of hops seems to be promising, due to their antioxidative properties, which may improve the stability of kombucha.
View Article and Find Full Text PDFDalton Trans
January 2025
Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
The development of Pd-based materials with high activity and long-term stability is crucial for their practical applications as an anode catalyst in direct formic acid fuel cells. Herein, we reveal that the catalytic activity of Pd towards formic acid oxidation can be enhanced by incorporation of a series of rare-earth oxides, including ScO, CeO, LaO, and PrO. For example, Pd nanoparticles incorporated with ScO supported on nitrogen-doped reduced graphene oxide (Pd-ScO/N-rGO-, = 1/3, 1/2, 2/3, 1, and 3/2; "" denotes the molar ratio of Pd : Sc) can be obtained using a sodium borohydride reduction method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!