Background: There is increasing evidence that sodium consumption alters the gut microbiota and host metabolome in murine models and small studies in humans. However, there is a lack of population-based studies that capture large variations in sodium consumption as well as potassium consumption.
Objective: We examined the associations of energy-adjusted dietary sodium (milligrams/kilocalorie), potassium, and sodium-to-potassium (Na/K) ratio with the microbiota and plasma metabolome in a well-characterized Chinese cohort with habitual excessive sodium and deficient potassium consumption.
Methods: We estimated dietary intakes from 3 consecutive validated 24-h recalls and household inventories. In 2833 adults (18-80 y old, 51.2% females), we analyzed microbial (genus-level 16S ribosomal RNA) between-person diversity, using distance-based redundancy analysis (dbRDA), and within-person diversity and taxa abundance using linear regression, accounting for geographic variation in both. In a subsample (n = 392), we analyzed the overall metabolome (dbRDA) and individual metabolites (linear regression). P values for specific taxa and metabolites were false discovery rate adjusted (q-value).
Results: Sodium, potassium, and Na/K ratio were associated with microbial between-person diversity (dbRDA P < 0.01) and several specific taxa with large geographic variation, including pathogenic Staphylococcus and Moraxellaceae, and SCFA-producing Phascolarctobacterium and Lachnospiraceae (q-value < 0.05). For example, sodium and Na/K ratio were positively associated with Staphylococcus and Moraxellaceae in Liaoning, whereas potassium was positively associated with 2 genera from Lachnospiraceae in Shanghai. Additionally, sodium, potassium, and Na/K ratio were associated with the overall metabolome (dbRDA P ≤ 0.01) and several individual metabolites, including butyrate/isobutyrate and gut-derived phenolics such as 1,2,3-benzenetriol sulfate, which was negatively associated with sodium in Guizhou (q-value < 0.05).
Conclusions: Our findings suggest that sodium and potassium consumption is associated with taxa and metabolites that have been implicated in cardiometabolic health, providing insights into the potential roles of gut microbiota and host metabolites in the pathogenesis of sodium- and potassium-associated diseases. More studies are needed to confirm our results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7727480 | PMC |
http://dx.doi.org/10.1093/ajcn/nqaa263 | DOI Listing |
Int J Pharm
January 2025
Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic. Electronic address:
The preparation of a solid dosage form containing bacteriophages, which meets pharmaceutical requirements and ensures long-term stability of the phage effect, is significant for implementing phage therapy in practice. A commonly used method for processing phages into a solid form is freeze-drying into a (so-called) freeze-dried cake; however, to date there have been no studies examining the pharmacopeial parameters of freeze-dried tablets with bacteriophages. In this study, we describe the preparation and properties of freeze-dried tablets containing a cocktail of purified pseudomonal bacteriophage DSM 33593 from the genus Pbunavirus and staphylococcal bacteriophage DSM 33473 from the genus Kayvirus (10 PFU/tablet) as the active ingredient.
View Article and Find Full Text PDFTalanta
January 2025
Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland. Electronic address:
An idea of using ion-exchanger salt containing optically active cations to prepare ion-selective membranes is proposed. Although the presence of an ion-exchanger in the composition of neutral ionophore based sensors is necessary, the choice of available salts for cation-selective sensors preparation, is usually limited to sodium or potassium compounds. In this work we propose application of an alternative salt, using a cation optically active both in absorption and emission mode as a mobile one.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India.
Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.
View Article and Find Full Text PDFEur J Hosp Pharm
December 2024
Department of Pharmacy Practice, Loma Linda University School of Pharmacy, Loma Linda, California, USA
Objective: Sodium polystyrene sulfonate (SPS) and sodium zirconium cyclosilicate (SZC) have been used for treating acute hyperkalaemia. The pharmacodynamic properties of SZC suggest greater theoretical utility in the acute setting than SPS, but there is no clear guidance on an optimal potassium binder. This study evaluated the efficacy of SZC and SPS in the treatment of acute hyperkalaemia.
View Article and Find Full Text PDFJ Clin Med
December 2024
Research Service, Department of Medicine, Raymond G. Murphy Veterans Affairs Medical Center, University of New Mexico School of Medicine, Albuquerque, NM 87108, USA.
Hyperglycemic emergencies cause significant losses of body water, sodium, and potassium. This report presents a method for computing the actual losses of water and monovalent cations in these emergencies. We developed formulas for computing the losses of water and monovalent cations as a function of the presenting serum sodium and glucose levels, the sum of the concentrations of sodium plus potassium in the lost fluids, and body water at the time of hyperglycemia presentation as measured by bioimpedance or in the initial euglycemic state as estimated by anthropometric formulas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!