Nanostructured surfaces are known to provide excellent optical properties for various photonics devices. Fabrication of such nanoscale structures to germanium (Ge) surfaces by metal assisted chemical etching (MACE) is, however, challenging as Ge surface is highly reactive resulting often in micron-level rather than nanoscale structures. Here we show that by properly controlling the process, it is possible to confine the chemical reaction only to the vicinity of the metal nanoparticles and obtain nanostructures also in Ge. Furthermore, it is shown that controlling the density of the nanoparticles, concentration of oxidizing and dissolving agents as well as the etching time plays a crucial role in successful nanostructure formation. We also discuss the impact of high mobility of charge carriers on the chemical reactions taking place on Ge surfaces. As a result we propose a simple one-step MACE process that results in nanoscale structures with less than 10% surface reflectance in the wavelength region between 400 and 1600 nm. The method consumes only a small amount of Ge and is thus industrially viable and also applicable to thin Ge layers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/abbeac | DOI Listing |
Adv Mater
January 2025
Third Institute of Physics - Biophysics, Georg August University, Friedrich-Hund Platz 1, 37077, Göttingen, Germany.
In the burgeoning field of super-resolution fluorescence microscopy, significant efforts are being dedicated to expanding its applications into the 3D domain. Various methodologies have been developed that enable isotropic resolution at the nanometer scale, facilitating the visualization of 3D subcellular structures with unprecedented clarity. Central to this progress is the need for reliable 3D structures that are biologically compatible for validating resolution capabilities.
View Article and Find Full Text PDFJ Mol Med (Berl)
January 2025
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases &, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
Periodontitis is a chronic inflammatory disease that destroys tooth-supporting structures and poses significant public health challenges due to its high prevalence and links to systemic health conditions. Traditional treatments are effective in reducing the inflammatory response and improving the clinical symptoms of periodontitis. However, these methods are challenging to achieve an ideal treatment effect in alveolar bone repair.
View Article and Find Full Text PDFNanoscale
January 2025
National Engineering Research Center for High-Efficiency Grinding, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China.
Rechargeable alkaline zinc batteries are emerging as promising candidates for next-generation energy storage systems, owing to their affordability, eco-friendliness and high energy density. However, their widespread application is hindered by stability challenges, particularly in alkaline environments, due to cathode corrosion and deformation, as well as dendrite formation and unwanted side reactions at the Zn anode. To address these issues, we successfully developed a 3D nickel micromesh-supported NiCoP (3D NM@NiCoP) electrode.
View Article and Find Full Text PDFNanoscale
January 2025
CSIR - Central Institute of Mining and Fuel Research (CIMFR), Digwadih Campus, Dhanbad - 828108, Jharkhand, India.
Alkali metal doping is a new and promising approach to enhance the photo/electrocatalytic activity of NiS-based catalyst systems. This work investigates the impact of sodium on the structural, electronic, and catalytic properties of NiS. Comprehensive characterization techniques demonstrate that Na-doping causes significant changes in the NiS lattice and surface chemistry translating into a larger bandgap than NiS.
View Article and Find Full Text PDFNanoscale
January 2025
Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, China.
Two-dimensional organic-inorganic perovskites have garnered extensive interest owing to their unique structure and optoelectronic performance. However, their loose structures complicate the elucidation of mechanisms and tend to cause uncertainty and variations in experimental and calculated results. This can generally be rooted in dynamically swinging spacer molecules through two mechanisms: one is the intrinsic geometric steric effect, and the other is related to the electronic effect orbital overlapping and electronic screening.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!