Acid mine drainage treatment with novel high-capacity bio-based anion exchanger.

Chemosphere

Chemical Process Engineering, P.O. Box 4300, FIN-90014, University of Oulu, Oulu, Finland.

Published: February 2021

Aminated peat (termed PG-Peat) produced using polyethylenimine and glycidyltrimethylammonium chloride was used for the removal of sulphate from real acid mine drainage (AMD) in batch and column mode sorption studies. In the batch tests, the highest sulphate removal capacity achieved was 125.7 mg/g. PG-Peat was efficient and rapid in sulphate removal from AMD even at low temperatures (2-5 °C), achieving equilibrium within a contact time of 30 min. The PG-Peat column treating real AMD showed even higher sulphate uptake capacity (154.2 mg SO/g) than the batch sorption studies. The regenerative and practical applicability of PG-Peat was also tested in column set-ups using synthetic sulphate solutions (at pH 5.8 and pH 2.0). The sulphate uptake capacity obtained was higher in column mode when the solutions were treated at acidic pH (2.0) compared to pH 5.8. This could be attributed to the presence of cationized amine groups on PG-Peat under acidic pH conditions. Almost complete sulphate desorption was achieved with NaCl in the column that treated synthetic sulphate solution at pH 5.8, while the lowest desorption rates were observed in the column that treated acidic synthetic sulphate solution (pH 2).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.128443DOI Listing

Publication Analysis

Top Keywords

synthetic sulphate
12
sulphate
9
acid mine
8
mine drainage
8
column mode
8
sorption studies
8
sulphate removal
8
sulphate uptake
8
uptake capacity
8
treated acidic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!