Forest fires can cause great changes in the composition, structure and functioning of forest ecosystems. We studied the effects of a fire that occurred >50 years ago in a temperate rainforest that caused flooding conditions in a Placic Andosol to evaluate how long these effects last; we hypothesized that the effects of fire on the soil greenhouse gas (GHG) balance could last for many years. We made monthly measurements of fluxes of carbon dioxide (CO), methane (CH) and nitrous oxide (NO) during two years of soils in an unburned forest (UF) and a nearby site that burned >50 years ago (BS). Our results show that CO emissions from soils were higher in the UF than in the BS, and positively correlated with temperature and negatively with soil water content at both sites. Both sites were net CH sinks (higher in the UF) and fluxes correlated positively with soil water content and negatively with temperature (stronger relation in the BS). Emissions of NO were low at both sites and showed correlation with friction velocity at the UF site. The soil GHG balance showed that the UF emitted about 80% more than the BS (5079 ± 1772 and 2815 ± 1447 g CO-eq m y, respectively). Combining our measured fluxes with data of CO net ecosystem exchange, we estimated that at the ecosystem level, the UF was a GHG sink while the BS was a source, showing a long-lasting effect of the fire and the importance of preserving these forest ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.142442 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!