Trps1 transcription factor represses phosphate-induced expression of SerpinB2 in osteogenic cells.

Bone

Center for Craniofacial Regeneration, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA. Electronic address:

Published: December 2020

Serine protease inhibitor SerpinB2 is one of the most upregulated proteins following cellular stress. This multifunctional serpin has been attributed a number of pleiotropic activities, including roles in cell survival, proliferation, differentiation, immunity and extracellular matrix (ECM) remodeling. Studies of cancer cells demonstrated that expression of SerpinB2 is directly repressed by the Trps1 transcription factor, which is a regulator of skeletal and dental tissues mineralization. In our previous studies, we identified SerpinB2 as one of the novel genes highly upregulated by phosphate (P) at the initiation of the mineralization process, however SerpinB2 has never been implicated in formation nor homeostasis of mineralized tissues. The aim of this study was to establish, if SerpinB2 is involved in function of cells producing mineralized ECM and to determine the interplay between P signaling and Trps1 in the regulation of SerpinB2 expression specifically in cells producing mineralized ECM. Analyses of the SerpinB2 expression pattern in mouse skeletal and dental tissues detected high SerpinB2 protein levels specifically in cells producing mineralized ECM. qRT-PCR and Western blot analyses demonstrated that SerpinB2 expression is activated by elevated P specifically in osteogenic cells. However, the P-induced SerpinB2 expression was diminished by overexpression of Trps1. Decreased SerpinB2 levels were also detected in osteoblasts and odontoblasts of 2.3Col1a1-Trps1 transgenic mice. Chromatin immunoprecipitation assay (ChIP) revealed that the occupancy of Trps1 on regulatory elements in the SerpinB2 gene changes in response to P. In vitro functional assessment of the consequences of SerpinB2 deficiency in cells producing mineralized ECM detected impaired mineralization in SerpinB2-deficient cells in comparison with controls. In conclusion, high and specific expression of SerpinB2 in cells producing mineralized ECM, the impaired mineralization of SerpinB2-deficient cells and regulation of SerpinB2 expression by two molecules regulating formation of mineralized tissues suggest involvement of SerpinB2 in physiological mineralization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7680451PMC
http://dx.doi.org/10.1016/j.bone.2020.115673DOI Listing

Publication Analysis

Top Keywords

cells producing
20
producing mineralized
20
mineralized ecm
20
serpinb2 expression
20
serpinb2
17
expression serpinb2
12
cells
10
trps1 transcription
8
transcription factor
8
expression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!