Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
While Gaussian process models are typically restricted to smaller data sets, we propose a variation which extends its applicability to the larger data sets common in the industrial drug discovery space, making it relatively novel in the quantitative structure-activity relationship (QSAR) field. By incorporating locality-sensitive hashing for fast nearest neighbor searches, the nearest neighbor Gaussian process model makes predictions with time complexity that is sub-linear with the sample size. The model can be efficiently built, permitting rapid updates to prevent degradation as new data is collected. Given its small number of hyperparameters, it is robust against overfitting and generalizes about as well as other common QSAR models. Like the usual Gaussian process model, it natively produces principled and well-calibrated uncertainty estimates on its predictions. We compare this new model with implementations of random forest, light gradient boosting, and -nearest neighbors to highlight these promising advantages. The code for the nearest neighbor Gaussian process is available at https://github.com/Merck/nngp.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.0c00678 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!